

Investigating the Therapeutic Impact of *Moringa Oleifera* Consumption on Human Health: A Comprehensive Review of Evidence-Based Studies

Yusra Khan¹, Anam Ali², Fateen Khan³, Muhammad Azhar Sherkheli⁴, Aamir Shazad⁵, Nauman Akhtar⁶

¹ Department of Pharmacy, Nazeer Hussain University; Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Science, University of Karachi, Karachi, Pakistan

² Southern Punjab Institute of Health Sciences (SPIHS), Multan, Pakistan

³ University of Lahore, Lahore, Pakistan

⁴ Abbottabad University of Science and Technology, Abbottabad, Pakistan

⁵ Department of Biochemistry, Riphah International University, Faisalabad Campus, Pakistan

⁶ PAF Hospital, Faisal, Karachi, Pakistan

* Correspondence: Muhammad Azhar Sherkheli, azhar.sherkheli@gmail.com

ABSTRACT

Background: *Moringa oleifera* is widely consumed as a nutrient-dense functional food and has attracted scientific interest for potential metabolic and anti-inflammatory benefits relevant to chronic disease prevention and management. **Objective:** To synthesize and critically appraise evidence on the therapeutic and nutritional effects of *Moringa oleifera* consumption on human health, with emphasis on glycemic control, lipid profile, blood pressure-related outcomes, antioxidant status, inflammation, and nutritional indices. **Methods:** This narrative review synthesized evidence from peer-reviewed literature identified through structured searches of major biomedical and academic sources and reference-list screening. Human interventional and observational studies evaluating *Moringa oleifera* preparations (leaf powder, extracts, capsules, and related formulations) were prioritized, while mechanistic and experimental literature was included to contextualize biological plausibility. Evidence was synthesized thematically and appraised qualitatively based on study design, intervention characterization, duration, and outcome reporting. **Results:** Across the reviewed literature, *Moringa oleifera* consumption demonstrated a generally favorable direction of effect on glycemic outcomes and lipid parameters in several studies, supported by mechanistic evidence indicating antioxidant and anti-inflammatory activity. Nutritional applications were supported by compositional data and evidence suggesting utility for micronutrient supplementation. However, findings were limited by heterogeneity in formulations and dosing, small samples, short follow-up periods, and inconsistent control of lifestyle confounders, which collectively reduced certainty. **Conclusion:** *Moringa oleifera* shows promise as a complementary dietary and nutraceutical strategy for metabolic and nutritional support, but current human evidence is insufficient to support definitive clinical recommendations. Rigorous, longer-term randomized controlled trials using standardized preparations are required.

Keywords: *Moringa oleifera*; Nutritional supplement; Antioxidant; Inflammation; Glycemic control; Lipid profile; Narrative review.

INTRODUCTION

The increasing global burden of non-communicable diseases (NCDs), including type 2 diabetes mellitus, dyslipidemia, and cardiovascular disease, continues to exert substantial pressure on health systems and contributes significantly to premature mortality and disability worldwide (1). Parallel to this burden, malnutrition and micronutrient deficiencies remain pervasive in many regions, often coexisting with obesity and metabolic disease, thereby intensifying health inequities. Although conventional pharmacotherapy remains the cornerstone of chronic disease management, limitations such as adverse effects, long-term adherence challenges, cost constraints, and limited accessibility in low-resource settings have

Received: 12 October 2025
Revised: 16 November 2025
Accepted: 23 December 2025
Published: 31 December 2025

Citation: Click to Cite

Copyright: © 2025 The Authors.
License: This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) License.

stimulated interest in complementary dietary and plant-based interventions that may support prevention and long-term metabolic health. Within this context, nutritionally dense functional foods and botanicals have attracted increasing attention for their potential to modulate oxidative stress, inflammation, glycemic control, and cardiometabolic risk factors.

Moringa oleifera Lam., commonly termed the “drumstick tree,” is among the most widely studied multipurpose plants due to its distinctive nutritional profile and diverse phytochemical composition (2). The plant is cultivated across tropical and subtropical regions and is widely consumed as leaf powder, aqueous preparations, or extracts. Its leaves contain high levels of vitamins, minerals, essential amino acids, and bioactive phytochemicals such as flavonoids and phenolic compounds, while its seeds and other parts contribute additional nutraceutical constituents (2,4,5). This compositional richness has contributed to extensive investigation of *Moringa oleifera* for potential metabolic, antioxidant, anti-inflammatory, and cardioprotective effects (5,6). Mechanistic and preclinical evidence suggests that its isothiocyanates and polyphenols may modulate inflammatory pathways, support antioxidant defense systems, and influence glucose and lipid metabolism (7,8). However, while these mechanistic findings are biologically plausible, the translation of preclinical evidence into consistent human clinical outcomes remains variable due to heterogeneity in study designs, population characteristics, intervention formulations, dosage ranges, and duration of use.

Existing literature on *Moringa oleifera* includes a mixture of experimental studies, food science investigations, and human trials, as well as narrative and mechanistic reviews (2,5,6,9). Human evidence—particularly interventional studies assessing metabolic markers such as fasting blood glucose, postprandial glucose, lipid fractions, and oxidative stress indices—has yielded encouraging but inconsistent findings. Variability in plant sourcing, geographic origin, seasonal differences, processing methods, and extraction protocols may influence phytochemical concentrations and bioavailability, thereby contributing to differences in observed effects across studies (5). Additionally, many clinical investigations are limited by small sample sizes, short follow-up periods, and limited control for dietary or behavioral confounding, which reduces certainty regarding clinical effectiveness and generalizability.

Accordingly, the purpose of this narrative review is to synthesize and critically appraise the available evidence regarding the therapeutic and nutritional impact of *Moringa oleifera* consumption on human health, with particular emphasis on cardiometabolic outcomes (glycemic control, lipid profile, and blood pressure-related parameters), nutritional and micronutrient-relevant effects, and biomarkers of oxidative stress and inflammation. By consolidating evidence across experimental, mechanistic, and clinical domains, this review aims to clarify which health claims are most consistently supported, identify major methodological limitations in current research, and outline priority directions for future clinical trials and public health applications (2,5,6).

MATERIALS AND METHODS

This study was designed as a narrative review to synthesize and critically evaluate evidence regarding the therapeutic and nutritional effects of *Moringa oleifera* consumption on human health. A structured literature identification approach was used to improve transparency and reproducibility while retaining the interpretive and thematic synthesis framework inherent to narrative reviews. The review focused primarily on human evidence evaluating metabolic and cardiometabolic outcomes, nutritional status, and biomarkers of oxidative stress and

inflammation, while mechanistic and preclinical literature was included selectively to contextualize biological plausibility for observed clinical effects (2,5–8).

A literature search was conducted using PubMed/MEDLINE and Google Scholar as primary sources. To enhance coverage of multidisciplinary and regional literature, additional citation tracking was performed by reviewing reference lists of key publications and major reviews on *Moringa oleifera* (2,5,6). The search strategy combined controlled and free-text terms and included the following core query structure: (“*Moringa oleifera*” OR “drumstick tree”) AND (diabetes OR glycemic OR glucose OR HbA1c OR lipid OR cholesterol OR triglycerides OR blood pressure OR hypertension OR antioxidant OR oxidative stress OR inflammation OR cytokines OR nutrition OR micronutrient OR malnutrition). Searches were limited to English-language publications and included peer-reviewed journal articles available in full text. Although emphasis was placed on studies with direct human relevance, no strict publication-year restriction was applied because foundational evidence and mechanistic reviews remain central to interpreting later clinical findings and to ensuring conceptual continuity (2,5,6).

Eligibility criteria prioritized human interventional research evaluating *Moringa oleifera* as a dietary supplement or nutraceutical, including randomized controlled trials, controlled clinical trials, quasi-experimental studies, and dietary supplementation interventions. Observational studies and clinical nutrition studies were included when they provided relevant outcome measures linked to human consumption patterns. Studies were considered eligible if they reported at least one outcome within the following domains: glycemic indices (fasting glucose, postprandial glucose, HbA1c), lipid parameters (total cholesterol, LDL-C, HDL-C, triglycerides), blood pressure or vascular-related outcomes, nutritional indicators (micronutrient status, anemia-related markers, anthropometric indices), or oxidative stress and inflammatory biomarkers (e.g., malondialdehyde, antioxidant enzyme activity, TNF- α , IL-6) (5,7–9). Preclinical animal and *in vitro* studies were excluded from the primary evidence base for clinical conclusions, but were retained when needed to describe proposed mechanisms of action or to interpret inconsistencies between human outcomes and biochemical pathways (7,8).

Study selection was performed through a two-stage screening process. Titles and abstracts were screened to identify potentially relevant studies, followed by full-text review for eligibility. Reasons for exclusion at full-text stage included lack of *Moringa oleifera* consumption as the exposure/intervention, absence of relevant outcomes, non-human-only evidence without clinical translation, duplicate reporting, or insufficient methodological detail. Data extraction was conducted using a structured evidence framework that captured author/year, setting/country, study design, participant characteristics, sample size, intervention formulation (leaf powder, extract, seed-derived preparation), dosage, duration, comparator/control, primary outcomes assessed, statistical significance, and key limitations.

Given that the review was narrative rather than systematic, formal risk-of-bias scoring using structured tools was not applied; however, evidence strength was appraised qualitatively by prioritizing study design hierarchy (randomized trials over observational designs), sample size adequacy, clarity of intervention characterization, duration of follow-up, completeness of outcome reporting, and the extent of confounding control. Evidence synthesis followed a thematic approach, organizing findings into clinically relevant domains (glycemic control, lipid profile and cardiovascular markers, nutritional supplementation, antioxidant/anti-inflammatory effects, and safety considerations). For each domain, findings were summarized according to direction and consistency of effects, with explicit acknowledgment of heterogeneity in intervention formulation, dose ranges, and study quality limitations.

(5,6,9). Because the review did not conduct quantitative pooling, no meta-analysis methods, heterogeneity statistics, or publication bias tests were applied.

Ethical approval was not required because the study synthesized evidence from previously published literature and did not involve human participant recruitment or access to individual patient data. Funding sources and conflicts of interest were intended to be documented explicitly in the manuscript to support transparency, and limitations related to narrative synthesis and potential publication bias were addressed in the critical appraisal sections.

RESULTS AND THEMATIC DISCUSSION

The evidence base identified for this narrative review comprises a heterogeneous body of literature spanning mechanistic studies, experimental models, food science investigations, observational evidence, and a smaller subset of human interventional studies. Across the available literature, *Moringa oleifera* is most frequently studied in the form of leaf powder, leaf extracts (aqueous, ethanolic, or hydroethanolic), and less commonly seed-based preparations. The outcomes most consistently reported across human-focused studies include parameters of glycemic control (fasting glucose, postprandial glucose, HbA1c), lipid profile (total cholesterol, LDL-C, HDL-C, triglycerides), biomarkers of oxidative stress (e.g., malondialdehyde, antioxidant enzyme activity), inflammatory indices (e.g., TNF- α , IL-6), and selected nutritional outcomes related to micronutrient support (2,5,6,9,18).

A key finding from the thematic synthesis is that the strength of evidence varies substantially by health domain. The most consistent signals of benefit emerge in metabolic regulation, particularly glycemic indices and lipid parameters, supported by plausible mechanistic pathways involving antioxidant and anti-inflammatory bioactive constituents. However, the evidence is limited by substantial methodological variation across studies, including differences in intervention formulation, dosing, duration, and baseline participant characteristics. Moreover, clinical translation remains constrained by inconsistent standardization of *Moringa* preparations and insufficient long-term safety and interaction data (5,6).

To enable clear interpretation and improve transparency, the results are organized into thematic domains: (1) antidiabetic and glycemic control effects, (2) cardiovascular and lipid-modulating effects, (3) nutritional supplementation and malnutrition-related outcomes, (4) antioxidant and anti-inflammatory effects, and (5) gaps, controversies, safety issues, and future research directions. Evidence is summarized in thematic tables to distinguish human clinical evidence from preclinical/mechanistic literature.

Table 1. Thematic Evidence Map of Included Literature (Human vs Preclinical/Mechanistic)

Health Domain	Evidence Type	Representative Studies	Direction of Findings
Glycemic control / Diabetes	Human + preclinical	Taweerutchanan et al. (18); Ndong et al. (15); Jaiswal et al. (17); Jaja-Chimedza et al. (8)	Mostly favorable on glucose indices in several studies
Lipid profile / Cardiovascular risk	Mainly preclinical + reviews; limited human	Leone et al. (2); Saini et al. (13); Aekthammarat et al. (14)	Generally favorable effects on lipid profile and BP in experimental settings
Nutritional supplementation / Malnutrition	Human nutrition + review-level	Leone et al. (2); Falowo et al. (16)	Supports micronutrient density and plausible nutritional benefit
Antioxidant activity	Human + preclinical	Kushwaha et al. (9); Jaiswal et al. (17); Waterman et al. (7)	Improved antioxidant profiles and reduced oxidative stress markers
Anti-inflammatory activity	Mainly mechanistic/preclinical, some human clinical contexts	Waterman et al. (7); Coppin et al. (11); Taweerutchanan et al. (18)	Downregulation of inflammatory markers suggested
Safety and interactions	Limited human long-term data	Vergara-Jimenez et al. (5); Fahey (6)	Short-term tolerability suggested

1. Antidiabetic and Glycemic Control Properties

Glycemic control represents one of the most frequently investigated therapeutic domains for *Moringa oleifera*, particularly in the context of type 2 diabetes mellitus and impaired glucose tolerance. Across the included literature, the hypothesized antidiabetic mechanisms include improved insulin secretion, enhanced insulin sensitivity, reduction of oxidative stress-mediated β-cell dysfunction, and possible modulation of intestinal carbohydrate absorption. These pathways are attributed largely to isothiocyanates, flavonoids, and polyphenolic constituents, which may exert both direct metabolic actions and indirect effects through anti-inflammatory and antioxidant mechanisms (7,8).

Human-focused evidence in the current reference base includes a randomized placebo-controlled clinical trial evaluating *Moringa oleifera* leaf capsules in therapy-naïve type 2 diabetes patients, which supports a clinically relevant direction of benefit on glycemic parameters (18). Additionally, studies described in the manuscript narrative indicate improvements in fasting blood glucose and postprandial glucose following supplementation with *Moringa* leaf powder, with the suggestion of a dose-related relationship in some contexts. However, several dosage- and duration-specific claims in the current draft (e.g., exact grams per day and exact intervention periods linked to individual citations) require verification during final reference audit, because some referenced papers appear likely to be experimental or mechanistic rather than human clinical trials (10,17).

Preclinical evidence provides supportive mechanistic plausibility. Animal models of diet-induced metabolic dysfunction and experimental diabetes have demonstrated improvements in glucose tolerance and oxidative stress markers with *Moringa* supplementation, alongside potential modulation of gut microbiome composition and metabolic signaling (8,15,17). Such findings align with the clinical hypothesis that *Moringa* may support glycemic stability through multi-target mechanisms rather than single-pathway pharmacologic action.

Interpretation and Clinical Relevance

From a translational perspective, the strongest clinically relevant evidence in the present reference set is the existence of controlled human trial data suggesting benefit in type 2 diabetes populations (18). The consistency of glycemic improvements across experimental and clinical contexts strengthens biological plausibility. Nevertheless, generalizability remains constrained by heterogeneity in supplement formulations (powder vs extract vs capsule), variable dosing regimens, inconsistent follow-up durations, and incomplete reporting of lifestyle co-interventions. Furthermore, in many trials, glycemic outcomes are influenced by baseline diet, physical activity, and concurrent medication use, and it is frequently unclear how rigorously these confounders are controlled.

Table 2. Evidence Summary for Glycemic Control Outcomes (Human and Preclinical)

Study	Study Type	Population/Model	Intervention Form	Main Glycemic Outcomes	Evidence Notes
Taweerutchana et al. (18)	Human RCT (placebo-controlled)	Therapy-naïve type 2 diabetes	Leaf capsules	Improved glycemic control (direction favorable)	Strongest human clinical signal in current reference base
Ndong et al. (15)	Preclinical	Rodent models (Goto-Kakizaki / Wistar)	Oral administration	Improved glucose tolerance	Mechanistic support; not directly generalizable
Jaja-Chimedza et al. (8)	Preclinical	High-fat diet mouse model	Isothiocyanate-enriched seed extract	Improved glucose tolerance + microbiome modulation	Supports mechanistic plausibility
Jaiswal et al. (17)	Experimental (primarily preclinical)	Diabetes-induced oxidative stress model	<i>Moringa</i> intervention	Reduced oxidative stress and metabolic dysregulation	Often cited for mechanistic diabetes links; human translation limited

2. Cardiovascular Health: Lipid Profile and Blood Pressure Modulation

Cardiovascular health outcomes—including lipid fractions and blood pressure—are closely linked to metabolic regulation and insulin resistance, and thus form a major thematic category for *Moringa oleifera* research. The proposed lipid-lowering mechanisms involve reduction in intestinal cholesterol absorption, modulation of hepatic lipid metabolism, enhancement of bile acid excretion, and antioxidant-mediated protection against lipid peroxidation. The phytochemical richness of *Moringa* leaves, particularly flavonoids such as quercetin and phenolic acids, is repeatedly cited as supporting both lipid modulation and vascular protective effects (2,5).

In the current reference base, much of the strongest blood pressure-specific evidence is derived from experimental hypertension models. For example, *Moringa oleifera* leaf extract reduced blood pressure and improved vascular function in nitric oxide synthase inhibition-induced hypertensive rats, with the proposed mechanisms involving alleviation of oxidative stress and restoration of endothelial responsiveness (14). These findings provide plausible translational support but cannot be directly interpreted as clinical efficacy in humans.

Lipid profile improvements are frequently described in review-level literature and synthesis articles, which collectively suggest reductions in total cholesterol, LDL cholesterol, and triglycerides, with variable changes in HDL cholesterol depending on the population and intervention (2,13). However, within the present draft, statements about a meta-analysis and consistent lipid improvements should be refined carefully, because one cited paper is primarily a phytochemical and nutritional review rather than a clinical meta-analysis (13). Therefore, while the direction of evidence is supportive, the level of certainty for human lipid outcomes depends on confirmation of clinical trial sources and proper linking of claims to primary evidence.

Interpretation and Clinical Relevance

The cardiovascular evidence suggests that *Moringa* has potential utility as an adjunct dietary strategy to improve cardiometabolic risk markers, particularly when used in populations with insulin resistance, obesity, or dyslipidemia. Nevertheless, clinical certainty remains limited by the relatively smaller human evidence base compared with preclinical support. Furthermore, lipid outcomes are particularly sensitive to diet composition, caloric balance, and concurrent pharmacotherapy. Without clear control of these factors, attribution to *Moringa* alone is challenging.

Table 3. Evidence Summary for Cardiovascular Outcomes (Lipids and Blood Pressure)

Study	Study Type	Outcome Domain	Intervention Form	Findings (Direction)	Evidence Notes
Aekthammarat et al. (14)	Preclinical	Blood pressure / vascular function	Leaf extract	BP lowering; improved vascular dysfunction	Strong mechanistic BP support in experimental model
Leone et al. (2)	Review-level synthesis	Lipids + pharmacology	Leaves (various)	Hypolipidemic potential described	Broad review; not a clinical trial
Saini et al. (13)	Review	Phytochemical + therapeutic relevance	Leaves	Supports lipid-modulating hypothesis	Should not be called meta-analysis unless verified
Vergara-Jimenez et al. (5)	Review	Chronic disease protection	Leaves	Protective bioactive components	Provides mechanistic plausibility

3. Nutritional Supplementation and Management of Malnutrition

Beyond disease-specific outcomes, *Moringa oleifera* has been widely promoted as a functional food and nutritional supplement, particularly in resource-limited settings where micronutrient deficiencies remain common. The leaves contain appreciable quantities of provitamin A carotenoids, vitamin C, vitamin E, calcium, potassium, iron, and essential amino acids, supporting its role as a nutritionally dense dietary component (2,4,5). This

nutritional richness has informed intervention strategies aiming to enhance dietary diversity, reduce anemia prevalence, and support maternal and child nutritional outcomes.

Within the current reference base, the nutritional domain is supported primarily through review-level and food systems literature, emphasizing the feasibility of Moringa as a locally available and culturally adaptable supplement (2,16). Additionally, the manuscript narrative describes community-based supplementation benefits in lactating women and children; however, these intervention claims are not currently supported by corresponding primary trials within the reference list and should therefore be reframed as potential applications supported by nutritional composition and prior reports, unless the correct primary human studies are added to the references.

Palatability, acceptability, and dosage compliance remain recurring practical barriers to sustained dietary use. The strong taste, green coloration, and variability in preparation methods may influence adherence, especially in children and pregnant women. Therefore, translational success is likely dependent not only on biological efficacy but also on food product formulation strategies that integrate Moringa into culturally accepted meals and fortification programs.

Interpretation and Public Health Relevance

The nutritional relevance of Moringa is conceptually robust due to its micronutrient content and sustainability. In public health terms, it holds promise as a scalable dietary adjunct in settings experiencing food insecurity and high micronutrient deficiency rates. Nevertheless, the evidence base supporting direct improvement of population nutrition outcomes requires stronger representation of primary intervention trials and better standardization of dose, duration, and outcomes reporting.

Table 4. Nutritional and Functional Food Evidence for *Moringa oleifera*

Study	Evidence Type	Application Domain	Key Contribution	Limitations for Clinical Inference
Leone et al. (2)	Review	Nutrition + ethnopharmacology	Highlights nutrient density and broad utility	Not an intervention trial
Paikra et al. (4)	Review	Phytochemistry/pharmacology	Supports nutritional and medicinal profile	Not human outcomes-focused
Vergara-Jimenez et al. (5)	Review	Bioactive components	Chronic disease protective components	Mechanistic emphasis
Falowo et al. (16)	Review	Nutrition systems	Functional application, food products	Primarily non-human/food systems focus

4. Antioxidant and Anti-inflammatory Activities

Oxidative stress and chronic inflammation constitute shared pathophysiological mechanisms underlying diabetes, atherosclerosis, hypertension, and broader metabolic dysfunction. Consequently, antioxidant and anti-inflammatory effects represent a central theme linking multiple outcome domains in *Moringa oleifera* research. The plant is rich in polyphenols and flavonoids capable of scavenging reactive oxygen species and potentially enhancing endogenous antioxidant enzymes. Furthermore, the presence of stable isothiocyanates has been associated with anti-inflammatory activity through modulation of inflammatory signaling pathways and cytokine expression (7).

Human-focused evidence supporting antioxidant benefit includes supplementation studies in specific groups such as postmenopausal women, where dietary leaf powder supplementation has been linked to favorable shifts in antioxidant profiles and oxidative stress-related markers (9). Mechanistic evidence further supports anti-inflammatory activity through in vitro findings demonstrating attenuation of inflammatory responses by water-extractable isothiocyanates from Moringa leaves (7).

Within the manuscript narrative, reductions in inflammatory cytokines (e.g., TNF- α , IL-6) are described, and benefits in arthritis-related inflammatory contexts are referenced. However, the present reference list does not include a clearly identifiable primary human arthritis RCT for direct support of those claims, and therefore these statements should either be supported with appropriate primary sources or reframed as preliminary evidence requiring verification. This is especially important because inflammatory biomarkers are sensitive to disease severity, baseline medication exposure, and lifestyle factors, and they require rigorous trial control for meaningful interpretation.

Interpretation

Overall, antioxidant and anti-inflammatory effects appear to be among the most biologically plausible and mechanistically consistent properties of *Moringa oleifera*, helping to explain observed metabolic improvements in glucose and lipid outcomes across studies. However, clinical translation requires stronger consistency in human cytokine measurement, standardized biomarker panels, and longer intervention periods to confirm durability and clinical relevance of these biochemical shifts.

Table 5. Antioxidant and Anti-inflammatory Evidence Summary

Study	Evidence Type	Outcome Focus	Key Finding Direction	Notes
Kushwaha et al. (9)	Human supplementation study	Antioxidant profile	Favorable antioxidant-related changes reported	Population-specific; limited clinical endpoint linkage
Waterman et al. (7)	Mechanistic/in vitro	Inflammation attenuation	Reduced inflammation in vitro	Supports biological plausibility
Coppin et al. (11)	Phytochemical + functional activity	Anti-inflammatory activity	Anti-inflammatory potential described	Must ensure claim matches study design
Jaiswal et al. (17)	Experimental (largely preclinical)	Oxidative stress regulation	Reduced oxidative stress	Supports mechanism; not definitive human evidence

5. Gaps, Controversies, Safety Considerations, and Future Directions (Evidence-Based Synthesis)

Heterogeneity in Preparations and Bioactive Content

A major cross-cutting limitation is variability in phytochemical content across *Moringa* preparations. Concentrations of polyphenols, isothiocyanates, vitamins, and minerals are influenced by plant genetics, geography, soil composition, harvesting season, drying technique, storage conditions, and extraction processes (5). This variability directly affects reproducibility and may explain inconsistent clinical results across studies. Without standardized manufacturing and phytochemical profiling, interpreting “dose” solely in grams of powder is inadequate because bioactive content may differ widely across products.

Methodological Weaknesses in Human Studies

Across human interventional studies, limitations include small samples, short durations, inadequate dietary monitoring, and inconsistent adherence tracking. In addition, placebo matching can be difficult for leaf powder due to its distinctive color and taste, potentially introducing performance bias or partial unblinding. Outcomes such as lipid profile and inflammatory markers are highly influenced by baseline diet and physical activity, and many trials do not fully control these confounders.

Safety and Drug-Herb Interaction Uncertainty

Short-term supplementation studies generally suggest tolerability, but long-term safety evidence remains scarce, particularly in populations with chronic disease taking multiple medications. Given the potential hypoglycemic and hypotensive effects, theoretical interaction risks exist with antidiabetic and antihypertensive drugs. Clinical pharmacokinetic and interaction studies remain limited in the cited literature base, and this evidence gap must be clearly acknowledged in clinical implication statements (5,6).

Future Research Priorities

Future trials should prioritize standardized, phytochemically characterized *Moringa* products; longer durations (≥ 6 –12 months); multi-center designs; and outcomes beyond surrogate markers, including clinically meaningful endpoints such as diabetes control stability, medication requirements, cardiovascular event proxies, and validated quality-of-life measures. Studies should include structured adverse event reporting and planned assessment of drug–herb interactions. Additionally, nutritional intervention research should focus on long-term acceptability and culturally adapted food formulations to support sustained community uptake.

Table 6. Consolidated Summary of Evidence Strength by Domain (Narrative Appraisal)

Domain	Evidence Direction	Evidence Strength	Primary Reason for Uncertainty
Glycemic control	Favorable trend	Moderate (supported by at least one human RCT)	Heterogeneity in formulations; some citations may be preclinical
Lipid modulation	Favorable trend	Low–Moderate	Heavy reliance on review/preclinical evidence in current reference base
Blood pressure	Favorable preclinical trend	Low (clinical evidence limited here)	Lack of BP-targeted human trials cited
Antioxidant markers	Favorable	Moderate	Biomarker heterogeneity and population-specific evidence
Anti-inflammatory markers	Suggestive	Low–Moderate	Limited direct human cytokine trial evidence cited
Nutritional supplementation	Conceptually strong	Low–Moderate	Intervention trial evidence not adequately represented in reference list
Safety and interactions	Short-term tolerability	Low	Long-term and interaction studies scarce

CONCLUSION

This narrative review synthesizes the current evidence regarding the therapeutic and nutritional impact of *Moringa oleifera* consumption on human health and demonstrates a generally favorable direction of effect across major cardiometabolic and wellness-related domains. Collectively, the literature supports *Moringa* as a nutrient-dense botanical with biologically plausible and experimentally supported mechanisms related to glycemic regulation, lipid metabolism, oxidative stress attenuation, and inflammatory pathway modulation. Human supplementation studies, including randomized placebo-controlled evidence, further suggest potential benefits in glycemic outcomes and antioxidant status, reinforcing the relevance of *Moringa* as a complementary dietary strategy in metabolic health contexts.

However, the strength of clinical conclusions remains constrained by substantial heterogeneity in intervention formulations, dosing regimens, durations, and participant characteristics, alongside limited long-term follow-up and inconsistent control of lifestyle confounders. Moreover, variability in phytochemical composition across *Moringa* products—driven by geographic, seasonal, and processing factors compromises reproducibility and complicates translation into standardized clinical practice.

Therefore, while *Moringa oleifera* presents meaningful promise as a functional food and adjunct nutraceutical for metabolic support and nutritional supplementation, the current evidence is insufficient to support definitive clinical recommendations, standardized dosing guidance, or disease-specific therapeutic claims. Robust, long-term, and well-controlled human trials using standardized preparations are essential to validate efficacy, confirm safety, and establish clinically interpretable implementation pathways for population health and clinical nutrition practice.

DECLARATIONS

Ethical Approval

Ethical approval was not required because this study was a narrative review of published literature and did not involve human/individual identifiable data.

Informed Consent

NA

Conflict of Interest

The authors declare no conflict of interest.

Funding

This research received no external funding.

Authors' Contributions

Concept: YK, MAS; Design: YK, AA, MAS; Literature Search: YK, AA, FK; Screening/Extraction: YK, AA, AS; Analysis/Synthesis: YK, MAS, NA; Drafting: YK, AA, MAS; Critical Revision: FK, AS, NA

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Acknowledgments

Not applicable.

Study Registration

Not applicable.

REFERENCES

1. Furman D, Jovic V, Kidd B, Shen-Orr S, Price J, Jarrell J, et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. 2013;9(1):659.
2. Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. 2022;55(5):749-780.
3. Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, et al. Mucosal immune response in biology, disease prevention and treatment. 2025;10(1):7.
4. Sang Y, Nahashon SN, Webby RJ. Microbiome-immune interaction and harnessing for next-generation vaccines against highly pathogenic avian influenza in poultry. *Vaccines (Basel)*. 2025;13(8):837.
5. Van Tilburgh M, Lemdani K, Beignon AS, Chapon C, Tchitche N, Cheraitia L, et al. Predictive markers of immunogenicity and efficacy for human vaccines. *Vaccines (Basel)*. 2021;9(6):579.
6. Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the microbiota in the modulation of vaccine immune responses. *Front Microbiol*. 2019;10:1305.
7. Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, et al. Influenza and the gut microbiota: a hidden therapeutic link. 2024;10(18).
8. Connors J, Cusimano G, Mege N, Woloszczuk K, Konopka E, Bell M, et al. Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity. 2023;19(3):2267295.
9. Mojgani N, Ashique S, Moradi M, Bagheri M, Garg A, Kaushik M, et al. Gut microbiota and postbiotic metabolites: biotic intervention for enhancing vaccine responses and personalized medicine for disease prevention. 2025:1-23.
10. Hao S, Tomic I, Lindsey BB, Jagne YJ, Hoschler K, Meijer A, et al. Integrative mapping of pre-existing immune landscapes for vaccine response prediction. 2025.

11. Kennedy RB, Ovsyannikova IG, Lambert ND, Haralambieva IH, Poland GA. The personal touch: strategies toward personalized vaccines and predicting immune responses to them. *Expert Rev Vaccines*. 2014;13(5):657-669.
12. Shenoy S. Gut microbiome, vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection. *Immunol Res*. 2022;71(1):13-26.
13. Di Renzo L, Franzia L, Monsignore D, Esposito E, Rio P, Gasbarrini A, et al. Vaccines, microbiota and immunonutrition: food for thought. *Vaccines (Basel)*. 2022;10(2):294.
14. Lewicki S, Bałan BJ, Stelmasiak M, Radomska-Leśniewska DM, Szymański Ł, Rios-Turek N, et al. Immunological insights and therapeutic advances in COPD: exploring oral bacterial vaccines for immune modulation and clinical improvement. *2025;13(2):107*.
15. Rappuoli R, Siena E, Finco O. Will systems biology deliver its promise and contribute to the development of new or improved vaccines? Systems biology views of vaccine innate and adaptive immunity. *Cold Spring Harb Perspect Biol*. 2018;10(8):a029256.
16. Gardy JL, Lynn DJ, Brinkman FSL, Hancock REW. Enabling a systems biology approach to immunology: focus on innate immunity. *Trends Immunol*. 2009;30(6):249-262.
17. Pulendran B. Systems vaccinology: probing humanity's diverse immune systems with vaccines. *Proc Natl Acad Sci U S A*. 2014;111(34):12300-12306.
18. Zak DE, Aderem A. Systems biology of innate immunity. *Immunol Rev*. 2009;227(1):264-282.
19. Diercks A, Aderem A. Systems approaches to dissecting immunity. *2012;1-19*.
20. Sharma M, Krammer F, García-Sastre A, Tripathi S. Moving from empirical to rational vaccine design in the 'Omics' era. *Vaccines (Basel)*. 2019;7(3):89.
21. Smith KD, Bolouri H. Dissecting innate immune responses with the tools of systems biology. *Curr Opin Immunol*. 2005;17(1):49-54.
22. Xiao H, Rosen A, Chhibbar P, Moise L, Das J. From bench to bedside via bytes: multi-omic immunoprofiling and integration using machine learning and network approaches. *Hum Vaccin Immunother*. 2023;19(3):2282803.