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ABSTRACT 

Background: Variability in immune responsiveness to seasonal influenza vaccination remains a persistent public 

health challenge, as a substantial subset of vaccinated individuals fails to mount adequate humoral and cellular 

protection. Increasing evidence suggests that mucosal microbiota composition modulates immune priming at the 

respiratory interface, yet its predictive value for influenza vaccine outcomes remains insufficiently characterized. 

Objective: To investigate whether pre-vaccination upper respiratory mucosal microbiota composition predicts 

humoral and cellular immune responses to the seasonal influenza vaccine and to identify microbial biomarkers 

associated with suboptimal responsiveness. Methods: A prospective observational cohort study was conducted over 

five months in Lahore, enrolling 220 adults (18–65 years) receiving a trivalent inactivated influenza vaccine. Pre-

vaccination nasopharyngeal and oropharyngeal swabs underwent 16S rRNA sequencing. Humoral immunity was 

assessed using hemagglutination inhibition assays at baseline and 28 days post-vaccination, and cellular immunity 

was evaluated using IFN-γ ELISpot and flow cytometric quantification of CD4⁺ and CD8⁺ T-cell activation. 

Multivariable regression, PERMANOVA, and random forest classification were applied with adjustment for key 

covariates. Results: Complete data were available for 212 participants, of whom 132 (62.3%) achieved seroconversion. 

Responders exhibited higher microbial diversity (Shannon index 3.9 ± 0.6 vs 3.4 ± 0.5, p = 0.002; Simpson index 0.87 

± 0.04 vs 0.81 ± 0.05, p < 0.001) and distinct beta diversity clustering (PERMANOVA p = 0.001). Responders 

demonstrated higher antibody fold-rise (5.7 ± 2.4 vs 2.1 ± 1.2, p < 0.001) and higher IFN-γ ELISpot responses (142 ± 

38 vs 87 ± 29 SFU/10⁶ PBMCs, p < 0.001) with greater CD4⁺ (14.6% vs 9.2%, p < 0.001) and CD8⁺ (12.3% vs 8.5%, p < 

0.01) activation. Higher Faecalibacterium abundance predicted seroconversion (adjusted OR 1.42, 95% CI 1.15–1.76, 

p < 0.001), whereas Streptococcus abundance was inversely associated (adjusted OR 0.63, 95% CI 0.48–0.82, p < 0.01); 

random forest classification achieved AUC 0.87 (95% CI 0.82–0.91). Conclusion: Pre-vaccination mucosal microbiota 

diversity and specific microbial signatures predict both humoral and cellular influenza vaccine responses, 

supporting the potential utility of microbial biomarkers for identifying suboptimal responders and informing 

microbiota-directed strategies to improve vaccine effectiveness. 

Keywords: Influenza Vaccines; Microbiota; Mucosal Immunity; Hemagglutination Inhibition; Cellular Immunity; 

ELISpot; Predictive Biomarkers; Vaccine Response. 

INTRODUCTION 

Seasonal influenza remains a persistent global public health threat, contributing to recurrent 

epidemics that drive substantial morbidity, mortality, and economic burden each year (1). 

Vaccination represents the most effective preventive strategy; however, the protective 

effectiveness of the seasonal influenza vaccine varies considerably across individuals and 

populations, even when vaccine formulation and delivery are standardized (2). This 

heterogeneity reflects differences in vaccine-induced immunogenicity, where a substantial 

subset of vaccinated individuals fails to achieve adequate humoral protection and/or robust 
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cellular immune activation, thereby remaining vulnerable to infection and severe outcomes 

(3). Understanding the biological and environmental determinants of this variability is 

essential for improving vaccine performance and optimizing public health strategies (4). 

Beyond host demographic and immunological factors, emerging evidence indicates that the 

human microbiota is a critical upstream regulator of immune readiness and vaccine 

responsiveness, functioning through continuous modulation of innate immune signaling, 

antigen presentation, and adaptive immune priming (5). 

The concept that commensal microbial communities shape vaccine immunogenicity has 

gained momentum over the last decade, supported by studies demonstrating associations 

between microbial diversity, microbial metabolites, and enhanced antibody responses to 

multiple vaccine platforms (6). In particular, systems-level immunoprofiling has highlighted 

that baseline immune states, partially sculpted by microbial exposure and composition, can 

predict subsequent vaccine-induced responses (7). Microbiota-driven immune modulation is 

biologically plausible because microbial ligands and metabolites continually engage 

mucosal pattern-recognition receptors and tune inflammatory thresholds, thereby 

influencing dendritic cell maturation, T-helper polarization, and B-cell differentiation (8). 

Furthermore, multi-omic approaches integrating host immune signatures and microbial 

features have reinforced that vaccine responsiveness is not solely a function of antigen 

exposure, but also of the host’s pre-existing immunological landscape, which is shaped by 

microbial and environmental inputs (9). Despite these advances, most vaccine–microbiota 

research has focused predominantly on the gut microbiome, leaving respiratory mucosal 

microbial compartments relatively underexplored, particularly for respiratory vaccines and 

pathogens (6,10). This represents a critical gap, because influenza infection is initiated at the 

respiratory epithelium, where mucosal immunity and local innate priming substantially 

influence the trajectory of immune activation and antigen-specific memory formation (2). 

The upper respiratory mucosa harbors a dynamic microbial ecosystem that may act as an 

immunological gatekeeper, shaping the early sensing and processing of vaccine antigens 

through local cytokine environments and antigen-presenting cell activation (2,11). 

Conceptually, the mucosal microbiota may influence vaccine response through several 

pathways: first, by regulating basal interferon signaling and epithelial barrier integrity; 

second, by modulating dendritic cell trafficking and antigen presentation; and third, by 

shaping the balance between inflammatory and tolerogenic responses that determine 

downstream antibody production and T-cell activation (5,8). While associations between 

microbiota composition and vaccine immunogenicity have been demonstrated for enteric 

and systemic vaccines, evidence directly linking pre-vaccination respiratory mucosal 

microbial profiles to influenza vaccine outcomes—particularly the combined humoral and 

cellular response—is limited and remains methodologically heterogeneous (6,10). This gap 

is especially important because influenza vaccine-induced protection is mediated not only by 

neutralizing antibodies, commonly assessed via hemagglutination inhibition (HAI) assays, 

but also by cellular immunity, including influenza-specific CD4⁺ and CD8⁺ T-cell responses 

that contribute to viral clearance, disease attenuation, and cross-strain recognition (3,12). 

Consequently, exclusive reliance on serological endpoints may underestimate clinically 

meaningful immune protection, underscoring the need for integrated evaluation of both 

humoral and cellular arms when studying microbiota–vaccine interactions (3,4). 

Identifying microbial predictors of influenza vaccine responsiveness has substantial 

translational relevance. If pre-vaccination mucosal microbial signatures can reliably stratify 

individuals at risk of suboptimal immunogenicity, this could enable targeted interventions, 

such as microbiota-directed immunonutrition, prebiotic supplementation, or probiotic 

strategies designed to optimize immune priming prior to vaccination (13). Such approaches 
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align with the broader movement toward personalized and precision vaccination, where 

baseline biomarkers are leveraged to tailor vaccine strategies, maximize immunogenicity, 

and reduce variability in protection (14). The need for predictive strategies is particularly 

pressing in populations with reduced vaccine responsiveness due to immunosenescence and 

chronic inflammation, where microbiota alterations are also more prevalent and may 

contribute to impaired immune responses (15). In parallel, systems vaccinology has 

demonstrated that predictive modeling using integrated biological features can improve 

response forecasting and inform rational vaccine design, suggesting that microbiota-

informed prediction models may be both feasible and clinically valuable (16,17). Importantly, 

advances in machine learning and network-based immune modeling further strengthen the 

rationale for exploring microbial biomarkers as part of integrated predictive frameworks for 

vaccine outcomes (18–20). 

Against this background, the present study investigated whether pre-vaccination mucosal 

microbiota composition is associated with, and predictive of, immune responses to the 

seasonal influenza vaccine, assessed through both humoral and cellular endpoints. 

Specifically, mucosal microbiota profiles obtained prior to vaccination were evaluated in 

relation to post-vaccination HAI antibody responses and cellular immunity measured by 

interferon-γ ELISpot and T-cell activation markers. We hypothesized that higher mucosal 

microbial diversity and enrichment of specific commensal taxa would be associated with 

stronger antibody responses and greater T-cell activation following vaccination, whereas 

microbial profiles suggestive of mucosal dysbiosis would predict suboptimal humoral and 

cellular responsiveness. By identifying mucosal microbial features linked to vaccine 

response heterogeneity, this study aims to contribute to the development of microbiota-

informed strategies to enhance influenza vaccine effectiveness and support more 

individualized immunization approaches (6,13,14). 

MATERIAL AND METHODS 

A prospective observational cohort study was conducted over a five-month period in Lahore, 

Pakistan, to evaluate whether pre-vaccination upper respiratory mucosal microbiota 

composition predicts subsequent humoral and cellular immune responses to the seasonal 

influenza vaccine. The study was implemented at outpatient vaccination clinics serving adult 

community populations, and all procedures followed internationally accepted ethical 

principles for human research. Ethical approval was obtained from the relevant institutional 

review committee prior to participant enrollment, and written informed consent was 

collected from all participants before any study-related activities. Participant confidentiality 

was ensured through coded identifiers, restricted-access data storage, and anonymized 

laboratory outputs, consistent with standard research governance practices for 

immunological and multi-omic investigations (21,22). 

Adults aged 18–65 years presenting for seasonal influenza vaccination were assessed for 

eligibility. Participants were included if they were clinically stable, free of acute respiratory 

tract infection symptoms at baseline assessment, and able to return for follow-up blood 

sampling after vaccination. Individuals were excluded if they reported antibiotic use within 

the preceding four weeks, probiotic or prebiotic supplementation within the preceding four 

weeks, immunosuppressive medication exposure, known immunodeficiency disorders, 

chronic inflammatory or autoimmune conditions requiring active pharmacological 

treatment, hospitalization within the prior three months, or receipt of influenza vaccination 

during the same season. Additional exclusions included pregnancy and any history of severe 

vaccine-related adverse reactions. Eligibility screening was conducted using a standardized 

checklist administered by trained research staff, and baseline characteristics were recorded 



LMJHCR -65 | 2025;3(2) | ISSN 3007-3448 | © 2025 The Authors | CC BY 4.0 | Page 4 

using a structured case report form, including age, sex, smoking status, body mass index, 

chronic comorbidities (including diabetes and hypertension), recent self-reported influenza-

like illness, and prior laboratory-confirmed influenza infection history when available. To 

reduce confounding related to behavioral and environmental determinants of the mucosal 

microbiota, participants were also asked about recent upper respiratory symptoms within the 

prior two weeks, intranasal corticosteroid use, and routine oral hygiene practices, and these 

variables were considered as potential covariates in adjusted analyses (21,22). 

A sample size estimation was performed a priori using an 80% statistical power and a two-

sided significance threshold of 0.05, guided by published literature indicating moderate 

effect sizes for microbiota-related variability in vaccine immunogenicity outcomes and the 

expected prevalence of suboptimal responders in adult cohorts (6,10). The target minimum 

sample size was set at 200 participants to enable multivariable modeling with adjustment for 

key confounders and to provide sufficient statistical precision for group comparisons 

between responder categories, with an oversampling strategy incorporated to mitigate 

attrition from incomplete immune assays or sequencing failures. Participants were enrolled 

using consecutive sampling during routine vaccination hours until the recruitment target 

was met. Following enrollment, all participants received a standard dose of the seasonal 

trivalent inactivated influenza vaccine administered intramuscularly by licensed vaccination 

staff according to clinical immunization practice. Vaccine administration was documented, 

including vaccination date, injection site, and observed post-vaccination immediate adverse 

events. Participants were followed for post-vaccination immune response assessment at 28 

days, which was defined as the primary post-immunization timepoint for measurement of 

serological response and antigen-specific cellular immunity consistent with established 

vaccine immunogenicity profiling approaches (5,7). 

Upper respiratory mucosal samples were collected immediately prior to vaccination. Two 

sampling sites were included to enhance representativeness of mucosal microbial ecology 

relevant to influenza immunobiology: nasopharyngeal and oropharyngeal compartments. 

Specimens were obtained using sterile flocked swabs by trained personnel under aseptic 

technique. Nasopharyngeal swabs were inserted through the nostril to the posterior 

nasopharynx and rotated gently for standardized contact time, while oropharyngeal swabs 

were applied to the posterior pharyngeal wall and tonsillar pillars while avoiding oral 

surfaces. Immediately after collection, swabs were placed into sterile nucleic acid 

stabilization transport media, labeled using unique participant identifiers, transported on ice 

to the processing facility within the same day, and stored at −80°C until DNA extraction. To 

minimize contamination and preserve analytical integrity, sample handling followed 

standardized clean workflow procedures, including the use of DNA-free consumables, glove 

changes between participants, and batch-wise inclusion of negative controls. Extraction 

blanks and reagent-only controls were processed alongside clinical specimens to enable 

downstream identification of background contamination signals, consistent with current 

best practices for microbiome sequencing studies (6,21). 

Microbial DNA was extracted using validated commercial extraction kits optimized for low-

biomass mucosal specimens, following the manufacturer’s protocol with standardized bead-

beating steps to ensure adequate lysis of Gram-positive organisms. DNA concentration and 

purity were evaluated using spectrophotometric methods and fluorometric quantification. 

Microbiota profiling was performed by sequencing the V3–V4 region of the bacterial 16S 

rRNA gene using Illumina sequencing technology. Library preparation included PCR 

amplification with locus-specific primers containing sequencing adapters and dual indices, 

followed by bead purification and quantification prior to pooling. Sequencing was conducted 

using paired-end chemistry. Raw sequencing reads were processed using a standardized 
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bioinformatics pipeline, including quality filtering, adapter trimming, chimera removal, and 

denoising. Operational taxonomic units were generated at 97% similarity and assigned 

taxonomy using curated reference databases, and additional sensitivity analysis was planned 

to evaluate whether results were robust across alternative taxonomic assignment thresholds. 

Alpha diversity was quantified using Shannon and Simpson indices to characterize within-

sample diversity, while beta diversity was computed using Bray–Curtis dissimilarity and 

weighted UniFrac distance matrices to evaluate between-sample community structure. 

Principal coordinate analysis was applied to visualize microbial community clustering across 

vaccine responder phenotypes, and permutational multivariate analysis of variance 

(PERMANOVA) was used to test group differences in beta diversity while accounting for 

covariates where appropriate (6,21,22). 

Humoral immune response was quantified using hemagglutination inhibition assays 

performed on serum collected at baseline (pre-vaccination) and at day 28 post-vaccination. 

Blood samples were drawn by trained phlebotomists into serum separator tubes, allowed to 

clot, centrifuged, and stored at −80°C until analysis. HAI assays were conducted using 

standardized procedures for influenza vaccine evaluation. Antibody titers were determined 

as the reciprocal of the highest serum dilution that inhibited hemagglutination. 

Seroconversion was operationally defined as a fourfold or greater increase in HAI titer 

between baseline and day 28, consistent with widely adopted immunogenicity benchmarks 

in influenza vaccine studies (1,5). In addition to categorical seroconversion classification, 

continuous measures of antibody fold-rise were retained for regression modeling to improve 

statistical sensitivity and preserve biological signal. 

Cellular immune responses were assessed at day 28 using interferon-γ enzyme-linked 

immunospot assays and flow cytometric analysis of antigen-stimulated T-cell activation. 

Peripheral blood mononuclear cells were isolated by density gradient centrifugation from 

heparinized whole blood. For ELISpot testing, PBMCs were stimulated with influenza vaccine 

strain antigens or peptide pools under standardized incubation conditions, and results were 

expressed as spot-forming units per 10⁶ PBMCs after subtraction of background spots from 

negative control wells. Flow cytometric assays were conducted on stimulated PBMCs to 

quantify CD4⁺ and CD8⁺ T-cell activation using fluorescence-labeled antibodies and gating 

strategies based on lymphocyte forward and side scatter properties, doublet exclusion, and 

viable-cell selection. Activated T cells were defined using established activation marker 

combinations, and percentages of activated CD4⁺ and CD8⁺ populations were recorded as 

cellular endpoints. Laboratory assays were performed by analysts blinded to microbiota 

profiles and clinical responder status to reduce measurement bias (7,21). To support 

integrated immunogenicity interpretation, participants were categorized into responder 

groups based on pre-specified criteria: humoral responders were defined by seroconversion, 

while cellular responders were defined by exceeding assay-specific thresholds for ELISpot 

and/or T-cell activation relative to baseline or unstimulated control values. Composite 

responder categories were also explored to evaluate concordance between humoral and 

cellular protection signatures (3,5). 

The primary exposure variables were mucosal microbial diversity indices and taxonomic 

relative abundances at genus-level resolution. The primary outcome was humoral response 

measured as seroconversion status at day 28 and antibody fold-rise. Secondary outcomes 

included IFN-γ ELISpot SFU/10⁶ PBMCs and activated CD4⁺ and CD8⁺ T-cell proportions. 

Key covariates included age, sex, BMI, smoking status, comorbidity status, recent respiratory 

symptoms, and intranasal corticosteroid use. Bias reduction measures included standardized 

specimen collection protocols, consistent timing of sampling relative to vaccination, blinded 

laboratory processing, inclusion of negative sequencing controls, and pre-specified statistical 
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models to limit post hoc inference inflation (21,22). To address confounding, multivariable 

models were constructed a priori with covariate adjustment guided by biological plausibility 

and previous literature on vaccine response heterogeneity and microbiota variation (5,6,10). 

Statistical analyses were performed using R software. Continuous variables were summarized 

using means and standard deviations or medians and interquartile ranges based on 

distributional characteristics, and categorical variables were reported as frequencies and 

percentages. Between-group comparisons were conducted using independent sample t-tests 

for normally distributed measures and Mann–Whitney U tests for non-normal measures. 

Categorical outcomes were compared using chi-square tests or Fisher’s exact tests as 

appropriate. Associations between microbial features and immune response outcomes were 

evaluated using multivariable regression. Logistic regression was used for seroconversion as 

a binary endpoint, while linear regression models were used for antibody fold-rise and 

cellular immune outcomes as continuous measures after appropriate transformation when 

required. Model assumptions were evaluated using residual diagnostics and collinearity 

checks. To identify microbial taxa discriminating responders from non-responders, linear 

discriminant analysis effect size was applied, and multiple testing correction was performed 

using the Benjamini–Hochberg false discovery rate approach to control for type I error 

inflation in high-dimensional microbial comparisons (6,22). For predictive classification, 

random forest models were trained on microbial features with stratified cross-validation to 

estimate model performance. Discriminatory capacity was quantified using the area under 

the receiver operating characteristic curve, and feature importance was computed to identify 

taxa most strongly contributing to classification performance, consistent with multi-omic 

biomarker discovery approaches applied in vaccine response prediction research (7,9,20). 

Missing data were minimized through standardized follow-up scheduling and reminder 

protocols, but incomplete datasets were anticipated due to failed sequencing reads or 

insufficient PBMC yield. The primary analysis used complete-case datasets for participants 

with valid microbiota sequencing and immune outcomes. Sensitivity analyses were planned 

to compare baseline characteristics of included versus excluded participants to assess 

missingness patterns and evaluate potential selection bias, following established 

recommendations for robust biomarker modeling and transparency in multi-omic studies 

(21,22). Data integrity was supported through double-entry verification of clinical data, audit 

trails for laboratory sample processing, and standardized scripts for bioinformatics and 

statistical workflows to enhance reproducibility. All analytical code and relevant metadata 

were maintained in controlled-access repositories, and sequencing outputs were prepared in 

formats suitable for deposition in public repositories in accordance with prevailing 

transparency standards for microbiome research (6,21,22). 

RESULTS 

A total of 220 participants were enrolled and received the seasonal influenza vaccine. After 

excluding individuals with incomplete sequencing reads and/or incomplete immune assay 

results, 212 participants were included in the final analytic dataset (responders n = 132; non-

responders n = 80). Baseline demographics were broadly comparable between groups, with 

no statistically significant differences in age, sex distribution, or comorbidity status (Table 1). 

The overall cohort had a mean age of 41.6 ± 12.4 years, with 52.8% males and 14.6% reporting 

chronic comorbidities (hypertension/diabetes). 

Microbiota sequencing generated high-quality profiles across all included participants, 

yielding a mean sequencing depth of approximately 46,500 reads per sample after quality 

filtering. Across the cohort, taxonomic assignment identified ~220 operational taxonomic 
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units (OTUs) spanning 9 bacterial phyla and 55 genera. Alpha diversity indices were 

significantly higher among responders, consistent with a more diverse and potentially 

resilient mucosal microbial ecosystem (Table 2). Responders exhibited higher Shannon 

diversity (3.9 ± 0.6) compared with non-responders (3.4 ± 0.5, p = 0.002), and similarly higher 

Simpson diversity (0.87 ± 0.04 vs. 0.81 ± 0.05, p < 0.001). 

Beta diversity analysis based on Bray–Curtis dissimilarity demonstrated distinct clustering 

between responders and non-responders, indicating that overall community structure 

differed by immune responsiveness (PERMANOVA p = 0.001). Principal coordinate analysis 

demonstrated tighter clustering among non-responders, suggesting relatively reduced 

ecological variability compared with responders. 

At the taxonomic level, responders demonstrated significantly higher relative abundance of 

Bacteroides (28.3% vs. 19.7%, p < 0.01) and Faecalibacterium (11.5% vs. 7.2%, p < 0.01), 

whereas non-responders showed enrichment of Streptococcus (13.8% vs. 7.6%, p < 0.001) and 

Prevotella (16.4% vs. 9.8%, p < 0.01) (Table 3). These taxa-level differences suggested that 

microbial communities associated with vaccine responsiveness were characterized by greater 

representation of genera linked to immune-supportive ecological profiles, while taxa more 

commonly associated with mucosal dysbiosis were overrepresented among suboptimal 

responders. 

Humoral immune outcomes showed clear separation between groups. Responders 

demonstrated a substantially higher antibody fold-rise (5.7 ± 2.4) compared with non-

responders (2.1 ± 1.2), corresponding to a mean difference of 3.6-fold (95% CI: 3.11 to 4.09; p 

< 0.001; Cohen’s d = 1.77) (Table 4). Cellular immune responses aligned with humoral 

findings: responders showed significantly higher IFN-γ ELISpot responses (142 ± 38 vs. 87 ± 

29 spots/10⁶ PBMCs), corresponding to a mean difference of 55 spots/10⁶ PBMCs (95% CI: 

45.92 to 64.08; p < 0.001; Cohen’s d = 1.58) (Table 4). Flow cytometry further supported this 

pattern, with responders demonstrating higher CD4⁺ T-cell activation (14.6% vs. 9.2%, p < 

0.001) and CD8⁺ T-cell activation (12.3% vs. 8.5%, p < 0.01). 

In multivariable logistic regression models adjusting for age and sex, higher 

Faecalibacterium abundance was an independent positive predictor of seroconversion (OR 

1.42, 95% CI 1.15–1.76, p < 0.001), whereas higher Streptococcus abundance was 

independently associated with reduced odds of seroconversion (OR 0.63, 95% CI 0.48–0.82, p 

< 0.01) (Table 5). Random forest classification using microbial features demonstrated strong 

discriminative performance in differentiating responders from non-responders (AUC 0.87; 

95% CI 0.82–0.91), with Bacteroides, Faecalibacterium, and Streptococcus ranking among the 

most important discriminatory taxa. 

Age-stratified analyses suggested that younger participants (<40 years) had higher 

seroconversion rates (69.1%) compared with participants ≥40 years (56.7%, p = 0.04). 

However, predictive model performance remained stable across age and sex strata, 

supporting the robustness of microbiota-based predictors across demographic subgroups. 

Table 1. Baseline Demographic and Clinical Characteristics by Vaccine Response Status 

Variable Responders 

(n=132) 

Non-Responders 

(n=80) 

Effect Estimate p-value 

Age (years), mean 

± SD 

40.9 ± 11.8 42.7 ± 13.2 Mean diff = −1.8 (95% CI 

−5.32 to 1.72); d = −0.15 

0.318 

Male sex, n (%) 71 (53.8) 41 (51.2) Δ = +2.6% 0.705† 

Female sex, n (%) 61 (46.2) 39 (48.8) Δ = −2.6% 0.705† 

Comorbidities, n 

(%) 

18 (13.6) 13 (16.2) Δ = −2.6% 0.596† 

†Chi-square test. 
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Table 2. Alpha Diversity Indices by Response Status 

Diversity Metric Responders (n=132) Non-Responders (n=80) Effect Estimate p-value 

Shannon Index, mean ± 

SD 

3.9 ± 0.6 3.4 ± 0.5 Mean diff = 0.50 0.002 

Simpson Index, mean ± 

SD 

0.87 ± 0.04 0.81 ± 0.05 Mean diff = 0.06 <0.001 

Table 3. Key Differentially Abundant Genera Between Groups 

Taxa (Genus) Responders (%) Non-Responders (%) Δ (Responders − Non) p-value 

Bacteroides 28.3 19.7 +8.6 <0.01 

Faecalibacterium 11.5 7.2 +4.3 <0.01 

Streptococcus 7.6 13.8 −6.2 <0.001 

Prevotella 9.8 16.4 −6.6 <0.01 

Table 4. Humoral and Cellular Immune Outcomes by Response Status 

Outcome Responders 

(n=132) 

Non-Responders 

(n=80) 

Effect Estimate p-value 

Antibody fold-rise, mean 

± SD 

5.7 ± 2.4 2.1 ± 1.2 Mean diff = 3.6 (95% CI 

3.11–4.09); d = 1.77 

<0.001 

ELISpot IFN-γ (spots/10⁶ 

PBMCs), mean ± SD 

142 ± 38 87 ± 29 Mean diff = 55 (95% CI 

45.92–64.08); d = 1.58 

<0.001 

CD4⁺ T-cell activation 

(%), mean 

14.6 9.2 Δ = +5.4% <0.001 

CD8⁺ T-cell activation 

(%), mean 

12.3 8.5 Δ = +3.8% <0.01 

Table 5. Multivariable Logistic Regression Predicting Seroconversion (Adjusted for Age and Sex) 

Predictor (Baseline Abundance) Adjusted OR 95% CI p-value 

Streptococcus 0.63 0.48–0.82 <0.01 

Faecalibacterium 1.42 1.15–1.76 <0.001 

 

Figure 1 Figure 1. Distinct Mucosal Microbiota Community Structure and Key Predictive 

Taxa Differentiating Influenza Vaccine Responders and Non-Responders. (A) Principal 

Coordinate Analysis (PCoA) based on Bray–Curtis dissimilarity demonstrates clear 

clustering separation between responders (blue) and non-responders (red), indicating 

significant differences in overall mucosal microbial community composition. (B) Random 

forest feature importance analysis identifies the top microbial taxa contributing to 

classification performance, with Faecalibacterium and Bacteroides showing the strongest 

positive contribution to responder status, while Streptococcus and Prevotella demonstrate 

negative contribution. 

DISCUSSION 

The present study provides evidence that pre-vaccination upper respiratory mucosal 

microbiota composition is associated with, and predictive of, variability in immune 

responsiveness to the seasonal influenza vaccine, supporting the concept that baseline 

microbial ecology is an important determinant of vaccine immunogenicity (6). Responders 
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demonstrated significantly higher alpha diversity and distinct microbial community 

structures compared with non-responders, suggesting that a more diverse mucosal microbial 

ecosystem may confer an immunological advantage that supports more efficient priming of 

adaptive responses. This finding aligns with broader evidence that microbiota-driven 

immune conditioning shapes baseline immune tone and influences the magnitude of 

vaccine responses through modulation of antigen-presenting cell activation, cytokine 

signaling, and lymphocyte differentiation (5,6). Importantly, the present results extend this 

framework specifically to the respiratory mucosal compartment, a biologically relevant site 

for influenza infection and immune engagement, and demonstrate that microbial profiles 

measured prior to vaccination contain clinically meaningful predictive information for both 

humoral and cellular outcomes (2,3). 

The observed enrichment of Bacteroides and Faecalibacterium among responders and the 

increased abundance of Streptococcus and Prevotella among non-responders suggests that 

particular microbial configurations may promote or constrain the development of protective 

immunity after vaccination. Prior microbiota–immunity studies have reported that microbial 

taxa commonly associated with more stable commensal ecosystems are linked to improved 

vaccine-induced antibody production and more effective T-cell responses, likely through 

sustained low-level stimulation of innate immune pathways that enhances dendritic cell 

maturation and T-helper differentiation (6,10). In this study, higher Faecalibacterium 

abundance was independently associated with increased odds of seroconversion after 

adjustment for age and sex, whereas Streptococcus abundance was inversely associated with 

seroconversion. These associations remained consistent across modeling approaches and 

were supported by random forest classification, which achieved strong discriminative 

performance (AUC 0.87), indicating that mucosal microbial signatures contain sufficient 

signal to meaningfully stratify responders from non-responders. Such predictive 

performance is consistent with systems vaccinology paradigms demonstrating that baseline 

biomarkers can forecast vaccine outcomes and underscores the feasibility of incorporating 

microbiota features into multi-dimensional prediction models of vaccine responsiveness 

(7,16,17). While the study does not establish causality, the convergent findings across 

diversity indices, differential abundance comparisons, and multivariable regression 

strengthen confidence that the observed patterns reflect biologically plausible relationships 

rather than random associations. 

A key strength of this study is the integrated evaluation of both humoral and cellular 

immunity. Although antibody titers remain a standard immunogenicity endpoint for 

influenza vaccines, cellular immunity contributes substantially to viral clearance, reduction 

of disease severity, and cross-strain protection, particularly when antigenic drift reduces 

neutralization capacity (3,12). In this cohort, responders showed substantially higher IFN-γ 

ELISpot responses and greater activation of both CD4⁺ and CD8⁺ T cells, indicating that 

mucosal microbial features were not only associated with antibody production but also 

reflected differences in T-cell-mediated immune activation. This dual-arm immune profiling 

addresses a limitation in much of the existing microbiota–vaccine literature, which has often 

relied on serological outcomes alone, and provides a more comprehensive understanding of 

how baseline microbial ecology may influence immunological breadth and functional 

response quality (6,10). The presence of distinct beta diversity clustering between groups 

further supports that immunogenicity differences may be linked to broader community-level 

architecture, rather than single-taxon effects, which is consistent with contemporary 

ecological interpretations of microbiota-host interactions (6). 

The results have potential translational implications. Identification of microbial predictors 

of vaccine responsiveness supports the feasibility of microbiota-informed risk stratification, 
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particularly in settings where influenza vaccine performance is variable and where 

individuals may remain insufficiently protected despite vaccination (14). If validated 

externally, pre-vaccination mucosal microbiota profiling could inform targeted strategies 

such as microbiota-directed immunonutrition, prebiotic supplementation, or probiotic 

interventions designed to optimize immune priming and improve vaccine-induced 

protection (13). This approach may be particularly relevant for populations at increased risk 

of poor vaccine responsiveness, such as older adults and individuals with metabolic or 

inflammatory comorbidities, where immune senescence and chronic low-grade 

inflammation may co-occur with altered microbial ecology (15). The stability of predictive 

performance across age and sex strata in the present analysis suggests that microbial 

predictors may provide incremental value beyond demographic factors, supporting their 

potential utility in precision vaccination frameworks (14,16). However, before clinical 

translation, predictive models must undergo external validation, and interventional trials are 

required to determine whether microbiota modulation can causally enhance influenza 

vaccine immunogenicity. 

Several limitations should be considered when interpreting these findings. First, although 

the design was prospective with respect to immune outcome assessment, microbiota was 

sampled at a single pre-vaccination timepoint; therefore, temporal fluctuations in microbial 

composition and their relationship to immune kinetics could not be evaluated (21). Second, 

reliance on 16S rRNA sequencing limits taxonomic resolution to the genus level and does 

not provide direct functional characterization of microbial metabolic pathways, making 

mechanistic inferences indirect. Third, mucosal microbiome studies are vulnerable to 

contamination and batch effects due to low biomass sampling; while negative controls and 

standardized workflows were incorporated, residual technical variation cannot be fully 

excluded (6,21). Fourth, although models were adjusted for age and sex, residual 

confounding by unmeasured or imperfectly measured variables such as diet, socioeconomic 

factors, and environmental exposures may have influenced microbial profiles and immune 

responsiveness. Fifth, this study was conducted in a single geographic setting, and 

generalizability may be limited due to regional differences in microbial ecology shaped by 

dietary patterns, environmental exposures, and healthcare access. Finally, responder 

classification was anchored primarily on seroconversion thresholds; while cellular markers 

were measured and aligned with humoral status, future work should consider composite 

immune responder phenotypes as primary endpoints to better reflect multidimensional 

protection (3,12). 

Future research should prioritize longitudinal sampling to evaluate mucosal microbial 

dynamics across baseline, early post-vaccination innate phases, and later adaptive response 

phases, enabling a clearer understanding of temporality and mechanistic pathways (6,10). 

Integration of metagenomic sequencing with metabolomic profiling would provide 

functional resolution, enabling identification of microbial pathways and metabolites that 

may directly shape immune priming and adaptive differentiation, while host immunogenetic 

or transcriptomic profiling could clarify how microbial signals interact with baseline 

immune states to predict vaccine response (7,9,16). In addition, randomized interventional 

studies targeting microbial modulation among predicted low responders would provide 

definitive evidence regarding causality and therapeutic feasibility, while external validation 

across diverse populations and vaccine platforms would determine the portability and 

clinical utility of microbial predictors. Collectively, such work would advance the 

development of microbiota-informed precision vaccination strategies that move beyond 

uniform immunization approaches and maximize protection at both individual and 

population levels (14,17). 
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In summary, the study demonstrates that pre-vaccination upper respiratory mucosal 

microbiota diversity and specific community-level signatures are strongly associated with 

influenza vaccine immunogenicity, including both humoral seroconversion and cellular 

immune activation. The identification of genera such as Faecalibacterium and Bacteroides 

as favorable predictors and Streptococcus and Prevotella as negative indicators provides a 

basis for future biomarker validation and mechanistic investigation. These findings support 

the broader hypothesis that mucosal microbial ecology is an actionable component of 

baseline immune readiness and may be leveraged to improve the effectiveness of influenza 

vaccination through predictive and microbiota-directed strategies (6,13,16). 

CONCLUSION 

This study demonstrated that pre-vaccination upper respiratory mucosal microbiota 

composition was significantly associated with variability in immune responsiveness to the 

seasonal influenza vaccine, with higher microbial diversity and enrichment of taxa such as 

Faecalibacterium and Bacteroides predicting stronger humoral seroconversion and more 

robust cellular immune activation, whereas increased Streptococcus and Prevotella 

abundance was linked to suboptimal responses, supporting the feasibility of using mucosal 

microbial signatures as predictive biomarkers and providing a foundation for microbiota-

informed precision vaccination strategies aimed at improving influenza vaccine 

effectiveness. 
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