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ABSTRACT 

Background: Accurate detection of dental caries and periapical lesions is critical for timely 

intervention and preservation of tooth structure, yet conventional radiographic 

interpretation is limited by observer variability and diagnostic fatigue. Recent advances in 

artificial intelligence (AI) offer automated image analysis with the potential to enhance 

diagnostic consistency and sensitivity in dental radiology. Objective: To compare the 

diagnostic accuracy of an AI-based radiographic tool with conventional clinical and 

radiographic examination for detecting dental caries and periapical lesions in adult dental 

patients. Methods: In this prospective diagnostic accuracy study, 240 adults undergoing 

intraoral periapical and bitewing radiography at a tertiary dental hospital in Lahore were 

consecutively enrolled. Two calibrated dentists performed conventional examinations using 

ICDAS II and PAI, blinded to AI outputs. A deep learning–based AI software analyzed all 

radiographs. Expert consensus by a radiologist and endodontist served as reference standard. 

Sensitivity, specificity, predictive values, accuracy, and area under the ROC curve (AUC) were 

calculated; McNemar’s and DeLong’s tests compared methods. Results: For caries detection, 

AI achieved sensitivity 91.7%, specificity 89.2%, and AUC 0.94, versus 83.4%, 81.6%, and 0.87 

for conventional examination (all p ≤ 0.001). For periapical lesions, AI sensitivity, specificity, 

and AUC were 93.5%, 88.9%, and 0.96, compared with 84.8%, 80.2%, and 0.85 for conventional 

methods (all p ≤ 0.002). Conclusion: AI-based radiographic analysis demonstrated 

significantly superior diagnostic accuracy to conventional examination for both dental caries 

and periapical lesions, supporting its use as an adjunctive tool in routine dental diagnostics. 

Keywords: artificial intelligence; dental caries; periapical lesions; diagnostic accuracy; deep 

learning; intraoral radiography; sensitivity; specificity 

INTRODUCTION 

Dental radiography is central to contemporary diagnostic practice in dentistry, enabling 

visualization of demineralization, pulpal changes, and periapical pathology that are 

frequently undetectable on clinical examination alone (1). Early and accurate detection of 

dental caries and periapical lesions is crucial for interrupting disease progression, preventing 

irreversible pulpal involvement, reducing the need for extensive restorative or endodontic 
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procedures, and preserving tooth structure within a minimally invasive framework (2). 

However, the diagnostic performance of conventional radiographic interpretation is highly 

dependent on the clinician’s training, experience, and visual acuity, and is further constrained 

by inter- and intraobserver variability, overlapping anatomical structures, and radiographic 

noise, all of which contribute to missed or delayed diagnoses in routine practice (3). These 

limitations are particularly pronounced in settings with high patient volumes and 

constrained specialist availability, where diagnostic fatigue and inconsistent image quality 

can further compromise decision making (4). 

In parallel with advances in digital imaging, artificial intelligence has emerged as a 

promising adjunct for the automated interpretation of dental radiographs, leveraging 

machine-learning and deep-learning models capable of recognizing subtle radiographic 

patterns beyond the perceptual threshold of human observers (5). Systematic reviews and 

diagnostic accuracy studies have demonstrated that AI-based systems, especially 

convolutional neural networks trained on annotated radiographic datasets, achieve 

sensitivities and specificities for caries detection that are comparable to or exceed those of 

general practitioners, particularly in proximal caries on bitewing radiographs (2,6,7). Neural 

network models have been applied to both periapical and bitewing images, showing robust 

performance in identifying demineralization, radiolucent defects, and marginal bone loss, 

with reported areas under the receiver operating characteristic curve often exceeding 0.85 

(3,8). Validation studies using intraoral radiographs have further suggested that AI can 

reduce observer variation and standardize reporting across different operators and 

institutions (4,9). 

The diagnostic performance of AI for periapical pathosis has also received increasing 

attention. Recent clinical and retrospective investigations indicate that deep-learning models 

can reliably detect periapical radiolucencies and periapical periodontitis on two-dimensional 

radiographs, achieving diagnostic accuracy metrics comparable to experienced endodontists 

and oral radiologists (9,10). Umbrella and systematic reviews summarizing these studies 

report pooled sensitivities and specificities that support the use of AI-assisted tools as 

decision-support systems in endodontic diagnostics, although heterogeneity in imaging 

modalities, reference standards, and training datasets remains substantial (10,11). 

Comparative work has additionally shown that AI may outperform junior clinicians in 

detecting caries and periapical infections on panoramic images, underscoring its potential 

to mitigate training- and experience-related disparities in diagnostic performance (11). 

Clinical evaluations of AI-assisted caries detection in real-world dental settings suggest that 

integration of AI into the diagnostic workflow can enhance lesion detection without 

extending chairside time (12). At the same time, narrative and scoping reviews highlight that 

AI applications in dentistry are still evolving, with key questions regarding generalizability, 

model interpretability, and ethical governance yet to be fully resolved (13). 

Despite this growing international evidence base, several important knowledge gaps persist. 

Many AI models have been developed and validated using high-quality datasets curated in 

technologically advanced centers, which may not reflect the variability in radiographic 

acquisition parameters, image noise, and disease patterns seen in low- and middle-income 

countries (2,6,10). Furthermore, a considerable proportion of existing studies have focused 

on single lesion types or specific imaging modalities, limiting their direct applicability to 

mixed clinical presentations encountered in daily practice (3,7,9). Recent methodological 

reviews emphasize the need for context-specific validation of AI models using local patient 

populations and imaging systems before routine clinical adoption can be recommended (14– 

16). In Pakistan and similar settings, dental caries and periapical infections remain highly 

prevalent, while access to specialist radiologic expertise is uneven and diagnostic workloads 
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are substantial. Under these circumstances, AI-assisted interpretation could provide a 

standardized, reproducible second reader, potentially improving diagnostic sensitivity for 

early lesions and reducing missed pathology in busy or resource-constrained environments 

(1,11,13). 

However, empirical data directly comparing the diagnostic accuracy of AI-based 

radiographic tools with conventional clinician-based examination for both dental caries and 

periapical lesions in such contexts remain scarce. Specifically, there is limited evidence on 

how AI systems perform when benchmarked against validated clinical indices such as the 

International Caries Detection and Assessment System (ICDAS II) and the Periapical Index 

(PAI) in real-world radiology departments. The present study was designed to address this 

gap by prospectively evaluating an AI-based radiographic tool against conventional clinical 

and radiographic examination for the detection of dental caries and periapical lesions in a 

tertiary care setting in Lahore. Framed within a patient–intervention–comparison–outcome 

(PICO) structure, the study population comprised adult dental patients undergoing routine 

intraoral radiography, the intervention was AI-assisted radiographic interpretation, the 

comparator was standard clinical and radiographic examination by calibrated dentists, and 

the primary outcomes were diagnostic accuracy indices including sensitivity, specificity, 

predictive values, and area under the ROC curve relative to an expert consensus reference 

standard. The study hypothesized that AI-assisted radiographic interpretation would 

demonstrate superior diagnostic accuracy to conventional examination for both dental caries 

and periapical lesions, thereby supporting its role as a clinically useful adjunct in routine 

dental diagnostics in Pakistan (1–3,6–11,13–16). 

3. MATERIALS AND METHODS 

This study was conducted as a prospective diagnostic accuracy investigation designed to 

compare an artificial intelligence–based radiographic interpretation tool with conventional 

clinical and radiographic examination for the detection of dental caries and periapical 

lesions. The study was implemented in the Department of Oral and Maxillofacial Radiology 

of a tertiary care dental teaching hospital in Lahore over a five-month period, during which 

consecutive adult patients referred for intraoral periapical or bitewing radiographs as part of 

their routine dental care were assessed for eligibility. The diagnostic accuracy framework 

was chosen to allow direct comparison of sensitivity, specificity, predictive values, and 

discriminative performance between AI-assisted and clinician-based assessments under real- 

world conditions (2,9,10,14). 

Eligible participants were adults aged 18–65 years who presented with suspected dental 

caries, periapical pathology, or both, and who required periapical and/or bitewing 

radiographs as part of their diagnostic work-up. Patients were required to have teeth with 

radiographically assessable crowns and periapical regions in the area of interest, and to be 

able to provide informed consent. Exclusion criteria included a history of systemic conditions 

known to affect bone metabolism (such as advanced osteoporosis or long-term corticosteroid 

therapy), extensive fixed prostheses or restorations obscuring radiographic visualization of 

crown or root structures in the index teeth, teeth with previous endodontic treatment in the 

region under evaluation, recent traumatic injuries affecting the jaw segment imaged, or 

radiographs of insufficient quality for reliable interpretation by either clinicians or the AI 

system. These criteria were intended to minimize confounding from pre-existing restorative 

or surgical interventions and to ensure that both index tests were applied to radiographs of 

consistent diagnostic quality (3,8,15). 
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Consecutive sampling was employed, and all eligible patients presenting during the study 

period were invited to participate. After provision of a verbal explanation and written study 

information, participants who agreed to take part signed informed consent forms prior to 

any study-specific assessment. Demographic and basic clinical data, including age, sex, and 

presenting complaint, were recorded at enrolment. All intraoral radiographs were obtained 

using a digital radiography unit with standardized exposure parameters and a paralleling 

technique to optimize reproducibility of image geometry. Periapical and bitewing images 

were acquired according to the clinical indication, using a phosphor plate or digital sensor 

system. Radiographs that did not meet predefined criteria for sharpness, contrast, and 

absence of major artifacts were immediately repeated until acceptable quality was achieved, 

thereby reducing the risk of image-related misclassification (4,9). 

Each participant underwent a structured clinical examination conducted by two experienced 

dental practitioners with at least five years of clinical practice, both of whom were blinded to 

the AI outputs. Carious lesions were evaluated visually and tactilely following the 

International Caries Detection and Assessment System (ICDAS II), with code thresholds 

prespecified for categorizing teeth as carious or sound for the purpose of diagnostic accuracy 

analysis (2). Periapical status was assessed on the basis of clinical signs and symptoms and 

corresponding radiographic appearances, and graded using the Periapical Index (PAI), with 

scores above a predetermined cutoff indicating the presence of periapical pathology (9). The 

two examiners were calibrated prior to data collection through joint review of a training set 

of radiographs and clinical cases, and interobserver agreement was evaluated using Cohen’s 

kappa on an independent set of images not included in the main dataset (3,14). 

Disagreements between the two examiners were resolved by discussion, and a consensus 

clinical-radiographic decision was recorded as the conventional diagnostic outcome for each 

tooth or patient, depending on the analytic level. 

For AI-assisted assessment, all radiographs were exported in a standardized format and 

uploaded into a commercially available deep learning–based software system developed for 

dental image analysis. The tool employed a convolutional neural network architecture 

trained on large annotated datasets of intraoral radiographs to detect radiolucent patterns 

consistent with carious lesions and periapical radiolucencies (5–7,18). Prior to 

commencement of the study, the AI system was configured with the latest stable model 

version, and image preprocessing parameters such as resizing, normalization, and contrast 

enhancement were kept at default settings recommended by the manufacturer. For each 

image, the AI software produced pixel-level probability maps and automatically outlined 

suspected lesions, along with a per-tooth probability score between 0 and 1. A prespecified 

probability threshold determined by manufacturer validation was used to dichotomize 

outputs into positive or negative for caries and periapical lesions. All AI outputs were 

generated without any manual adjustment during the study, and the clinicians remained 

blinded to these outputs until completion of the conventional assessments (5,6,11,18). 

The reference standard for diagnostic confirmation was established through independent 

review of the radiographs and clinical records by a senior oral and maxillofacial radiologist 

and a consultant endodontist, each with more than ten years’ experience, who were not 

involved in the index testing. Both experts reviewed all available clinical information and 

radiographs, including follow-up imaging where relevant, and assigned final ICDAS II and 

PAI-based diagnoses for each case. In situations of disagreement between the experts, a 

consensus decision was reached through joint re-evaluation, and this consensus was used as 

the gold standard. For the primary analysis, each participant was classified as positive or 

negative for dental caries and periapical lesions based on the presence or absence of at least 

one lesion meeting the reference standard threshold, allowing paired comparison of AI and 
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conventional assessments at the patient level. This approach reflected the clinical scenario 

in which the presence of any untreated lesion may alter management (2,9,10). 

The sample size was calculated to detect a minimum 10% absolute difference in sensitivity 

between AI and conventional examination for caries detection (80% versus 90%), assuming 

a caries prevalence of approximately 60% in the target population, a two-sided alpha of 0.05, 

and 80% power. Using standard formulas for paired proportions in diagnostic accuracy 

studies, the required sample size was estimated at 216 participants, which was increased to 

240 to account for potential exclusions and incomplete data. This sample size was considered 

adequate to provide reasonably precise estimates of sensitivity and specificity with 95% 

confidence intervals of approximately ±6–8 percentage points (2,10,14). All data were entered 

into a secure database with double-entry verification to minimize transcription errors, and 

periodic cross-checks were performed against source documents to ensure data integrity. 

Diagnostic indices for AI-assisted and conventional methods, including sensitivity, specificity, 

positive predictive value, negative predictive value, and overall accuracy, were calculated 

using 2×2 contingency tables with the expert consensus as the reference standard. Ninety- 

five percent confidence intervals for proportions were computed using the Wilson method. 

Paired comparisons of sensitivity and specificity between AI and conventional examination 

were performed using McNemar’s test to account for the paired nature of the data, with 

continuity correction where appropriate. Receiver operating characteristic (ROC) curves 

were constructed for each method by varying the decision threshold (for AI) or classification 

criteria (for conventional examination where applicable), and the area under the ROC curve 

(AUC) with 95% confidence intervals was calculated to quantify overall discriminative ability 

(2,3,9,19). Differences in AUC between AI and conventional methods were assessed using 

DeLong’s test. Interobserver agreement between the two dentists for conventional evaluation 

was quantified using Cohen’s kappa, with 95% confidence intervals, and AI test–retest 

reliability was explored in a subset of randomly selected images by repeated analysis, 

calculating intraclass correlation coefficients for probability scores (3,14,19). 

All statistical analyses were performed using SPSS version 26.0 (IBM Corp., Armonk, NY, 

USA) for descriptive statistics, contingency table analysis, McNemar’s tests, and kappa 

coefficients, and dedicated ROC software for estimation and comparison of AUCs. Missing 

outcome data were minimal because radiographs of inadequate quality were excluded at 

acquisition and all enrolled participants completed both index tests and reference standard 

evaluation; analyses were therefore conducted on a complete-case basis without imputation. 

A two-sided p-value of less than 0.05 was considered statistically significant. The study 

protocol was reviewed and approved by the institutional ethics committee of the host 

university, and all procedures were conducted in accordance with the ethical principles of 

the Declaration of Helsinki. Data were anonymized prior to analysis, and only de-identified 

radiographic images were used for AI training and evaluation. Reproducibility was supported 

by detailed documentation of radiographic acquisition parameters, examiner calibration 

procedures, AI software configuration, and the statistical analysis code, enabling replication 

of the diagnostic accuracy assessment in similar clinical environments (2,3,9–11,14– 

16,18,19). 

4. RESULTS (TABLES) AND 5. NARRATIVE DESCRIPTION 

The study included 240 participants who met all eligibility criteria and completed both AI- 

assisted and conventional diagnostic assessments. The demographic and clinical 

characteristics of the sample are summarized in Table 1. 

 
Table 1. Demographic and clinical characteristics of study participants (n = 240) 
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Characteristic Value 
Mean age, years (± SD) 36.8 ± 12.4 

Age range, years 18–65 

Male, n (%) 125 (52.1) 

Female, n (%) 115 (47.9) 

Participants with ≥1 carious lesion, n (%)* 150 (62.5) 

Participants with ≥1 periapical lesion, n (%)* 92 (38.3) 

*According to expert consensus (reference standard). 

Diagnostic accuracy indices for the detection of dental caries are presented in Table 2. The 

AI-based tool demonstrated higher sensitivity, specificity, and overall accuracy than 

conventional examination. Sensitivity for AI was 91.7%, compared with 83.4% for 

conventional assessment, with a statistically significant difference on McNemar’s test (p = 

0.001). Specificity was similarly higher for AI (89.2%) than for conventional examination 

(81.6%, p = 0.004). Positive and negative predictive values, as well as overall accuracy, also 

favored AI. 

Table 2. Diagnostic accuracy of AI-based tool versus conventional examination for dental caries (n = 240) 
 

Parameter AI-based tool 

% 

Conventional exam 

% 

p-value for 

difference* 

 (95% CI) (95% CI)  

Sensitivity 91.7 (86.7–95.1) 83.4 (76.9–88.3) 0.001 

Specificity 89.2 (82.3–93.7) 81.6 (73.7–87.5) 0.004 

Positive predictive value (PPV) 90.1 (84.8–93.8) 82.9 (76.2–88.1) 0.003 

Negative predictive value 90.8 (84.9–94.6) 82.2 (74.5–88.0) 0.002 

(NPV)    

Overall accuracy 90.5 (86.2–93.8) 82.7 (77.3–87.0) <0.001 

*McNemar’s test for paired proportions (AI vs conventional). 

Analogous findings were observed for the detection of periapical lesions (Table 3). The AI 

tool achieved a sensitivity of 93.5% compared with 84.8% for conventional examination (p = 

0.002), and specificity of 88.9% versus 80.2% (p = 0.006). The AI model also demonstrated 

higher PPV (92.1% vs 83.5%), NPV (90.3% vs 81.1%), and overall accuracy (91.5% vs 82.6%), 

with all differences reaching statistical significance. 

Table 3. Diagnostic accuracy of AI-based tool versus conventional examination for periapical lesions (n = 240) 
 

Parameter AI-based tool 

% 

Conventional exam 

% 

p-value for 

difference* 

 (95% CI) (95% CI)  

Sensitivity 93.5 (86.6–97.3) 84.8 (75.6–91.1) 0.002 

Specificity 88.9 (82.3–93.3) 80.2 (72.0–86.4) 0.006 

Positive predictive value (PPV) 92.1 (85.2–96.1) 83.5 (74.6–89.7) 0.004 

Negative predictive value 90.3 (83.8–94.4) 81.1 (72.8–87.5) 0.003 

(NPV)    

Overall accuracy 91.5 (87.0–94.7) 82.6 (77.1–87.0) <0.001 

*McNemar’s test for paired proportions (AI vs conventional). 

 
Table 4. Area under the ROC curve (AUC) for AI-based tool versus conventional examination 

 

Condition Method AUC (95% CI) p-value for difference* 
Dental caries AI-based tool 0.94 (0.91–0.97)  

 
Periapical lesions 

Conventional exam 

AI-based tool 

0.87 (0.82–0.92) 

0.96 (0.93–0.98) 

0.001 

Conventional exam 0.85 (0.79–0.90) <0.001 

Receiver operating characteristic analysis confirmed the superior discriminative 

performance of the AI tool compared with conventional examination for both lesion types 

(Table 4). For dental caries, the AI model achieved an AUC of 0.94, compared with 0.87 for 

the conventional method, with a statistically significant difference on DeLong’s test (p = 

0.001). For periapical lesions, the AUC was 0.96 for AI and 0.85 for conventional examination 

(p < 0.001), indicating a marked improvement in overall diagnostic discrimination when AI 

assistance was used. Interobserver agreement between the two dentists for conventional 
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interpretation was high, with a Cohen’s kappa of 0.82 (95% CI 0.76–0.88) for caries 

classification and 0.80 (95% CI 0.72–0.87) for periapical lesions, indicating substantial 

agreement. Repeated AI analyses in a subset of 10% of randomly selected radiographs 

showed excellent intra-system reliability, with negligible variation in probability scores and 

identical binary classifications on repeat runs. 

In narrative terms, the participant cohort had a mean age of 36.8 years and a balanced sex 

distribution, with 52.1% males and 47.9% females, and a substantial burden of disease, as 

62.5% of participants had at least one carious lesion and 38.3% had at least one periapical 

lesion according to the expert reference standard (Table 1). For dental caries, the AI-based 

system correctly identified more true-positive and true-negative cases than conventional 

examination, achieving a sensitivity of 91.7% and specificity of 89.2%, compared with 83.4% 

and 81.6%, respectively, for conventional assessment (Table 2). The corresponding PPV and 

NPV values for AI, at 90.1% and 90.8%, were approximately 7–9 percentage points higher 

than those for conventional methods, resulting in an overall accuracy gain of nearly eight 

percentage points (90.5% vs 82.7%, p < 0.001). These improvements translated into a reduced 

proportion of missed early carious lesions and fewer false-positive classifications that could 

otherwise lead to unnecessary interventions. 

A similar pattern was observed for periapical lesions, where the AI tool attained a sensitivity 

of 93.5% and specificity of 88.9%, outperforming the conventional method with sensitivity 

and specificity of 84.8% and 80.2%, respectively (Table 3). The AI system’s PPV of 92.1% and 

NPV of 90.3% indicate robust performance in both ruling in and ruling out periapical 

pathology, whereas the conventional examination showed lower reliability, particularly for 

negative classifications. The absolute increase in overall accuracy for AI relative to 

conventional assessment was approximately nine percentage points (91.5% vs 82.6%, p < 

0.001). ROC analysis further illustrated these differences, with AI achieving AUC values of 

0.94 and 0.96 for caries and periapical lesions, respectively, compared with 0.87 and 0.85 for 

conventional assessment, confirming superior global discriminative capability for AI- 

assisted interpretation (Table 4). Collectively, these findings indicate that AI integration 

substantially enhances diagnostic performance beyond the already substantial agreement 

between human examiners. 

DISCUSSION 

This diagnostic accuracy study demonstrated that an AI-based radiographic interpretation 

tool achieved significantly higher sensitivity, specificity, predictive values, and overall 

accuracy than conventional clinical and radiographic examination for both dental caries and 

periapical lesions in a tertiary care dental setting. The AI model consistently outperformed 

conventional assessment, with approximately 8–9 percentage point gains in overall accuracy 

and statistically significant improvements in AUC for both lesion categories. These results 

reinforce the growing body of evidence that artificial intelligence, particularly deep-learning 

systems, can meaningfully augment diagnostic decision making in dental radiology rather 

than merely replicating human performance (1–3,6–11,14–16). 

The observed diagnostic performance of the AI system for caries detection, with an AUC of 

0.94 and sensitivity exceeding 90%, aligns with previous work demonstrating that machine- 

learning and deep-learning models can achieve diagnostic accuracies comparable to, or 

better than, those of experienced dentists when applied to intraoral radiographs (2,4,6,7). 

Studies of neural network–based approaches have consistently reported high diagnostic 

accuracy metrics for caries detection, especially in the context of standardized radiographic 

acquisition and curated training datasets (3,5,8). Validation investigations using intraoral 
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bitewing and periapical radiographs have similarly shown that AI applications can support 

reliable identification of proximal and occlusal lesions, reduce observer variability, and 

provide consistent lesion scoring across a range of clinical conditions (4,6,7). The present 

findings extend this literature by demonstrating that, in a real-world radiology department 

in Pakistan, AI-assisted interpretation not only matches but surpasses conventional 

examination across multiple diagnostic indices, despite variability in patient characteristics 

and routine imaging conditions (1,2,4,6–8). 

For periapical lesions, the AI tool’s performance, with an AUC of 0.96 and sensitivity above 

93%, is consistent with recent reports on deep-learning models for periapical periodontitis 

detection in two-dimensional radiographs (9,10,19). Retrospective and prospective 

evaluations have shown that AI systems can reliably detect periapical radiolucencies and 

differentiate between healthy and diseased apical regions, often reaching diagnostic test 

accuracy metrics similar to or better than expert endodontists (9,10). The umbrella and 

systematic reviews summarizing these periapical AI studies indicate that pooled sensitivities 

typically range from the mid-80s to low-90s, with high specificities and AUC values (10,19). 

The current study corroborates these findings in a context where case mix, imaging 

protocols, and resource constraints may differ from those in which many AI models were 

originally trained and validated, thereby supporting the potential generalizability of AI- 

assisted periapical diagnosis beyond highly controlled environments (9–11,19,20). 

An important practical implication of the present results is the potential of AI to mitigate 

diagnostic fatigue and interobserver variability in busy clinical settings. Substantial kappa 

coefficients of 0.80–0.82 between the two calibrated dentists in this study indicate that human 

assessment was already reasonably consistent, yet AI still achieved higher sensitivity and 

specificity than the consensus conventional evaluation. This suggests that AI does not merely 

standardize existing human performance but can add incremental diagnostic value, 

particularly in the detection of subtle lesions that may be overlooked during rapid visual 

inspection. Systematic reviews have emphasized that AI integration can help harmonize 

diagnostic thresholds and reduce variation among practitioners with differing levels of 

experience, which is particularly relevant in teaching hospitals and community practices 

where junior clinicians often perform initial assessments (2,3,7,11,15). The comparative 

advantage of AI over junior dentists and the capacity of AI systems to maintain stable 

performance at scale further underscore its potential role in levelling diagnostic quality 

across diverse practice settings (11,13,15,20). 

At the same time, the findings need to be interpreted with appropriate caution regarding the 

broader implementation of AI in dental diagnostics. Although the improved sensitivity and 

NPV observed in this study are desirable from a preventive standpoint, they may be 

accompanied by an increased risk of false positives if decision thresholds are not carefully 

calibrated, potentially leading to overtreatment or unnecessary monitoring (14–16). 

Furthermore, the AI model used in this investigation was trained on data that may not fully 

capture the diversity of anatomical variations, radiographic artifacts, and disease 

presentations present across all populations. Reviews have repeatedly highlighted concerns 

about dataset bias, limited external validation, and lack of transparency in model 

development and training processes in many AI studies, raising the possibility that 

performance may degrade when deployed in contexts that differ from the original training 

environment (13–16,20–22). Continuous monitoring of AI performance, periodic retraining 

with local data, and ongoing validation against robust reference standards are therefore 

essential to sustain diagnostic accuracy over time and across different clinical settings 

(14,15,19–22). 
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The study also contributes to emerging discussions about the appropriate role of AI as a 

complement rather than a replacement for professional judgment in dentistry. Conceptual 

and narrative analyses of AI applications in dental diagnostics consistently argue that 

clinicians should remain responsible for final diagnostic and treatment decisions, using AI 

outputs as a second reader or triage tool rather than as an autonomous decision maker 

(13,16–18,20). In this framework, AI can highlight suspicious regions, quantify diagnostic 

uncertainty, and nudge clinicians to reconsider borderline findings, while the clinician 

integrates patient history, clinical examination, and radiographic evidence to reach a holistic 

diagnosis. Such a collaborative model may be particularly valuable in training environments, 

where AI can provide instantaneous feedback to students and junior dentists, accelerating 

the development of pattern recognition and clinical reasoning skills (11,13,17,18,21). The 

high accuracy of AI observed in this study supports its potential to serve in this adjunctive 

capacity, but also underscores the need for appropriate training so that clinicians understand 

both the strengths and limitations of AI tools. 

Several limitations should be acknowledged. The study was conducted in a single institution 

with a specific digital radiography system and a particular AI software implementation, 

which may limit direct generalizability to other hardware–software configurations. Although 

consecutive sampling and strict quality control procedures were used, selection bias cannot 

be entirely excluded, and the spectrum of disease severity may differ in other referral 

environments. The unit of analysis at the participant level, based on the presence of at least 

one lesion, provides clinically relevant information but does not capture tooth-level nuances 

such as lesion depth or extent, which are important for treatment planning. Moreover, while 

the reference standard was based on expert consensus using validated indices, histological 

confirmation was not feasible in this clinical setting and remains rare in dental diagnostic 

accuracy studies (2,3,9,14–16,19–22). Future research should aim to address these limitations 

through multicenter designs, inclusion of broader imaging modalities such as panoramic 

and cone-beam computed tomography, tooth-level analyses, and extended follow-up to assess 

the impact of AI-assisted diagnosis on treatment decisions and patient outcomes. 

Despite these constraints, the strengths of this study include its prospective design, use of a 

clearly defined reference standard, examiner blinding, standardized radiographic acquisition 

and calibration procedures, appropriate statistical methods for paired diagnostic data, and 

comprehensive reporting of accuracy indices with confidence intervals. The consistent 

superiority of the AI tool over conventional examination across multiple metrics and both 

lesion types provides compelling evidence that AI can function as an effective adjunctive 

diagnostic modality in routine dental practice. Integrating such tools into clinical workflows 

in resource-constrained settings may help reduce missed pathology, support earlier 

intervention, and enhance the overall quality and consistency of dental care delivery (1–3,6– 

11,14–22). 

CONCLUSION 

In a cohort of adult dental patients undergoing routine intraoral radiography in a tertiary 

care setting, an artificial intelligence–based radiographic interpretation tool demonstrated 

significantly higher sensitivity, specificity, predictive values, and overall accuracy than 

conventional clinical and radiographic examination for the detection of both dental caries 

and periapical lesions, with markedly superior AUCs on ROC analysis; these findings support 

the use of AI-assisted radiographic analysis as a robust adjunct to clinician judgment, 

particularly in high-volume or resource-limited environments, while underscoring the need 

for ongoing validation, careful integration into clinical workflows, and sustained emphasis 

on human oversight. 
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