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ABSTRACT

Background: Alzheimer’s disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive decline and
neurodegeneration associated with beta-amyloid plaques and tau protein tangles. Traditional diagnostic tools, while effective in advanced stages,
often lack sensitivity for early detection, delaying intervention and limiting treatment efficacy. Innovations in neuroimaging, including the
integration of artificial intelligence (Al) and nanotechnology, offer promising advancements in the early identification of AD-related pathologies.
Objective: To systematically evaluate the role of advanced neuroimaging techniques—particularly those augmented by AI and nanotechnology—
in the early detection, diagnosis, and monitoring of Alzheimer’s disease. Methods: A systematic literature review was conducted in May 2025
using PubMed, Google Scholar, ResearchGate, and Sci-Hub. Search strategies incorporated MeSH terms and free-text keywords. From 503
identified records, 50 studies met inclusion criteria based on relevance to neuroimaging in human AD diagnosis. Data extraction focused on
imaging modality, diagnostic performance, population characteristics, and analytic methods. Results: Structural MRI consistently identified
hippocampal and medial temporal lobe atrophy, while functional MRI revealed disrupted connectivity in key cognitive networks. PET imaging,
particularly with amyloid and tau tracers, demonstrated early molecular changes. Al-based models enhanced diagnostic accuracy across
modalities, and nanoparticle-enhanced imaging showed improved sensitivity in preclinical detection. Conclusion: Advanced neuroimaging,
particularly when integrated with AI and nanotechnology, significantly improves early diagnostic capabilities in Alzheimer’s disease. These
modalities hold potential for earlier intervention, personalized monitoring, and better patient outcomes, although challenges related to
standardization, cost, and clinical translation persist.
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INTRODUCTION

Alzheimer’s disease (AD) represents a mounting global health crisis, currently affecting over 30 million people
worldwide and projected to impact more than 100 million individuals by 2050 due to increased life expectancy and

aging populations (1). Clinically, AD manifests as a progressive decline in memory, executive function, and
isuospatial ability, often accompanied by behavioral changes and loss of autonomy (2). Its pathological hallmarks

include extracellular deposition of beta-amyloid plaques and intracellular neurofibrillary tangles of hyperphosphorylated tau
protein, which begin accumulating long before overt symptoms emerge (3). Despite the availability of several neuroimaging
tools, early and accurate diagnosis remains challenging, especially during the preclinical and mild cognitive impairment (MCI)
stages, when therapeutic interventions may be most effective (4). Conventional structural imaging modalities like magnetic
resonance imaging (MRI) detect gross atrophy in regions such as the hippocampus and medial temporal lobe, but they lack
molecular specificity and often capture disease only at advanced stages (5). Functional imaging using positron emission
tomography (PET) and functional MRI (fMRI) has enhanced our understanding of metabolic and connectivity alterations in

AD, yet these techniques are limited by high cost, technical complexity, and delayed biomarker visualization (6,7).

Artificial intelligence (AI) has emerged as a transformative tool for medical imaging, offering capabilities to process complex
datasets and identify subtle changes beyond the perceptual threshold of human observers. Machine learning algorithms such
as support vector machines and convolutional neural networks have demonstrated high accuracy in distinguishing between
AD, MCI, and normal aging using structural and functional neuroimaging data (8). Simultaneously, advances in
nanotechnology have led to the development of nanoparticle-based contrast agents capable of crossing the blood-brain barrier
and binding specifically to beta-amyloid and tau deposits, thereby enhancing the sensitivity and resolution of imaging
modalities (9,10). While AI and nanotechnology hold immense potential to improve diagnostic precision and enable earlier
intervention, these innovations remain underutilized in clinical practice. Major barriers include limited regulatory approval,
lack of standardization, safety concerns regarding nanoparticle biodistribution, and variability in AI model validation and
generalizability (11). Although several reviews have explored individual aspects of Al or nanotechnology in AD imaging, few

have comprehensively assessed their combined utility in early detection and disease monitoring. The heterogeneity of study
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designs, biomarker targets, and analytic methods further complicates evidence synthesis and clinical translation. A critical
appraisal of current literature is necessary to consolidate existing findings, identify methodological strengths and limitations,
and highlight opportunities for integration across these emerging fields. The present systematic review aims to address this
knowledge gap by evaluating the diagnostic performance of neuroimaging techniques enhanced by Al and nanotechnology in
detecting Alzheimer’s disease at early stages. Specifically, the objective is to determine how these modalities improve sensitivity,
specificity, and clinical utility in comparison to conventional imaging approaches, thereby supporting the development of more

effective diagnostic pathways and personalized treatment strategies.

MATERIAL AND METHODS

This study was designed as a systematic review, aimed at critically evaluating the diagnostic accuracy and utility of advanced
neuroimaging modalities—specifically artificial intelligence (AI)-assisted and nanotechnology-enhanced techniques—in the
early detection and monitoring of Alzheimer’s disease (AD). The rationale for employing this design stemmed from the
observed heterogeneity in methodologies and outcome metrics across primary studies in this domain, which precluded meta-
analysis and justified a detailed qualitative synthesis. The review was conducted over a six-week period from April to May 2025
and included literature published until May 31, 2025. The setting was virtual and library-based, with access to full-text databases

through institutional subscriptions at Ibadat International University, Islamabad.
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Figure 1 PRISMA Flow Chart

Eligible studies included original human research or systematic reviews that investigated the role of neuroimaging—structural
MR, functional MRI (fMRI), positron emission tomography (PET), diffusion-weighted imaging (DWI), and nanoparticle-
based imaging—augmented by Al algorithms or nanotechnological innovations in the diagnosis or monitoring of AD. Inclusion
criteria required that studies report on diagnostic outcomes such as sensitivity, specificity, accuracy, or biomarker detection in

clinically or preclinically diagnosed AD populations. Studies were excluded if they were conference abstracts, animal-only
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studies, non-English publications, or failed to distinguish AD from other neurodegenerative conditions. Articles were selected
using a multi-phase screening process. An initial database search yielded 503 records from PubMed, Google Scholar,
ResearchGate, and Sci-Hub. After the removal of 43 duplicates, 460 titles and abstracts were screened. A total of 100 full-text
articles were assessed for eligibility, and 50 met the inclusion criteria. Manual citation tracking was also used to identify
additional eligible studies. The recruitment process involved automated and manual database filtering using pre-specified
Boolean logic and Medical Subject Headings (MeSH) terms such as “Alzheimer’s disease,” “neuroimaging,” “MRI, “PET,
“MRI;” “nanotechnology,” and “artificial intelligence.” Screening and selection were independently conducted by two reviewers
with disagreements resolved through consensus. As this was a secondary data analysis involving publicly available literature,

informed consent was not applicable. However, data extraction was conducted under strict academic integrity protocols.

A standardized data extraction form was used to systematically collect information on study design, sample size, setting,
participant demographics, neuroimaging technique(s), AI models used (e.g., support vector machines, convolutional neural
networks), tracer or nanoparticle types, diagnostic outcomes, and statistical measures. Operational definitions were aligned
with diagnostic frameworks such as the NINCDS-ADRDA and DSM-5, where applicable. Neuroimaging performance was
characterized based on reported outcome metrics including classification accuracy, sensitivity, specificity, area under the curve

(AUCQ), and signal-to-noise ratio improvements.

Potential sources of bias, such as publication bias and selection bias, were minimized through comprehensive database coverage
and the inclusion of both positive and negative outcome studies. Risk of bias within individual studies was qualitatively assessed
based on study design, sample representativeness, and whether validation cohorts or cross-validation techniques were used for
AT models. Confounding was addressed by noting whether included studies adjusted for covariates such as age, APOE status,
and comorbidities. The sample size for inclusion (n=50 studies) was determined by thematic saturation and methodological
rigor rather than numerical thresholds, given the qualitative nature of the synthesis. Data were analyzed using Microsoft Excel
for extraction management and descriptive tabulation, while narrative synthesis methods guided the thematic aggregation of
findings. No imputation methods were required, as missing data were excluded on a case-by-case basis. Subgroup patterns—

such as imaging modality, geographic distribution, and participant stage (preclinical, MCI, AD)—were reported descriptively.

Ethical approval for the study protocol was obtained from the Institutional Review Board (IRB) of Ibadat International
University (Ref No. IIUI-NEURO-2025-013). Data handling conformed to institutional research ethics standards, with all data
securely stored on password-protected devices. No personal identifying information was collected, and all sources were cited
transparently. Reproducibility was ensured through the use of a clearly defined search strategy, eligibility criteria, and extraction

templates, with all documentation archived for auditability.

RESULTS
A total of 503 articles were identified through comprehensive searches of PubMed, Google Scholar, ResearchGate, and Sci-Hub.

After removing 43 duplicate entries, 460 records remained for title and abstract screening. Of these, 360 were excluded for
irrelevance or failure to meet the inclusion criteria. The full texts of 100 studies were assessed for eligibility, and following the
application of predefined inclusion and exclusion criteria, 50 studies were selected for final analysis. The study selection process
is illustrated in the PRISMA flow diagram (Figure 1).

Among the 50 included studies, 22 employed structural magnetic resonance imaging (sMRI), 14 utilized functional MRI
(fMRI), 18 used positron emission tomography (PET) with either amyloid or tau tracers, 9 included fluorodeoxyglucose PET
(FDG-PET), 11 incorporated diffusion-weighted imaging (DWTI) or diffusion tensor imaging (DTT), and 7 investigated artificial
intelligence (AI) applications in neuroimaging analysis. Some studies used multiple imaging modalities in combination. In the
structural MRI studies, medial temporal lobe atrophy—particularly in the hippocampus—was consistently reported. Additional
structural changes were observed in the entorhinal cortex, parahippocampal gyrus, and posterior cingulate cortex. These studies
encompassed both cross-sectional and longitudinal designs, utilizing either 1.5T or 3T MRI scanners. Most analyses employed
voxel-based morphometry or cortical thickness measurements. The fMRI studies included both resting-state and task-based
protocols. Resting-state fMRI assessed alterations in functional connectivity, commonly targeting the default mode network
(DMN), salience network, and executive control network. Decreased connectivity was frequently observed in the posterior
cingulate cortex, precuneus, and medial prefrontal cortex. Task-based fMRI evaluated brain activation during memory
encoding, language comprehension, and executive function tasks, typically using the blood oxygen level-dependent (BOLD)
signal. Among the PET-based studies, 11 used amyloid tracers such as [11C]PiB, [18F]florbetapir, and [18F]flutemetamol. These
studies reported cortical amyloid deposition in regions including the prefrontal cortex, parietal lobes, and precuneus. Seven
studies used tau-specific tracers such as [18F]AV-1451 or [18F]MK-6240, showing tau accumulation in the medial temporal

lobe, inferior temporal cortex, and fusiform gyrus. Standardized uptake value ratio (SUVR) was the primary analytic metric,
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with reference regions commonly including cerebellar cortex or white matter. FDG-PET studies revealed hypometabolism in
the temporoparietal cortex, posterior cingulate, and precuneus regions. Quantitative measures such as SUVR, metabolic
covariance, and glucose metabolism indices were frequently reported. Study populations included cognitively normal controls,

individuals with mild cognitive impairment (MCI), and patients with clinically diagnosed AD.

Table 1. Characteristics of Studies Included in the Review

Category Modality/Feature ~ Studies  Sample Size Population Regions/Targets Key Findings Techniques /
(n) Metrics
Structural sMRI 22 15-800 AD, MCI, MTL, Atrophy detection ~ VBM, cortical
Controls hippocampus, thickness
PCC
Functional fMRI 14 20-500 AD, MCI, DMN, PCC, Connectivity loss Resting/task
Controls precuneus BOLD
Molecular Amyloid PET 11 30-700 AD, MCI, Cortex (prefrontal,  Amyloid load SUVR, PiB,
Controls parietal) florbetapir
Tau PET 7 40-600 AD, MCI Temporal, Tau linked to AV-1451, MK-
fusiform symptoms 6240
Metabolic FDG-PET 9 25-300 AD, MCI, Temporoparietal, Hypometabolism SUVR,
Controls PCC metabolic
maps
Microstructural DWI/DTI 11 18-400 AD, MCI, White matter Reduced FA, 1 TBSS,
Controls tracts MD tractography
Advanced AI Models 7 40-600 AD, MCI, Whole-brain data >85% accuracy SVM, CNN,
Analytics Controls feature
selection
Emerging Tech Nanoparticle 4 Preclinical/<50 ~ Mostly Amyloid, tau Improved USPIO, QDs,
Imaging animal/human plaques sensitivity gold NPs
pilot
Combined Imaging +
Biomarkers CSF/APOE

AD; Alzheimer’s disease; MCI; Mild cognitive impairment; PCC; Posterior cingulate cortex; MTL; Medial temporal lobe; DMN;
Default mode network; FA; Fractional anisotropy; MD; Mean diffusivity; SUVR; Standardized uptake value ratio; VBM; Voxel-
based morphometry; SVM; Support vector machine; CNN; Convolutional neural network; USPIO; Ultra-small

superparamagnetic iron oxide; QDs; Quantum dots; NPs; Nanoparticles

DWTI and DTI studies described microstructural white matter changes, characterized by decreased fractional anisotropy (FA)
and increased mean diffusivity (MD), particularly in the cingulum bundle, corpus callosum, fornix, and uncinate fasciculus.
Imaging data processing utilized tract-based spatial statistics (TBSS), region-of-interest (ROI) analysis, and probabilistic
tractography. Several studies explored correlations between white matter integrity and cognitive performance. Seven studies
applied AI algorithms such as support vector machines (SVM), convolutional neural networks (CNN), and random forest
classifiers to analyze imaging data. Inputs included structural MRI, fMRI, PET, or multimodal datasets. Outcome metrics
comprised classification accuracy, sensitivity, and specificity for distinguishing between healthy controls, MCI, and AD.
Techniques such as data augmentation, dimensionality reduction, and feature extraction were frequently employed to enhance

model performance.

Four studies investigated nanoparticle-enhanced imaging, using ultra-small superparamagnetic iron oxide (USPIO)
nanoparticles, quantum dots, and gold nanoclusters. These contrast agents were engineered to cross the blood-brain barrier
and selectively bind to amyloid-f or tau aggregates. Imaging was conducted using high-resolution MRI or PET, with analyses
focused on signal intensity, contrast ratios, and particle biodistribution. Most findings were reported from preclinical or post-
mortem studies. The 50 included studies varied in technical parameters such as slice thickness, repetition time (TR), echo time
(TE), spatial resolution, and scan duration. Participant ages ranged from the mid-50s to late-80s. Recruitment settings included
memory clinics, dementia registries, and multicentre cohorts like the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Sample sizes ranged from 15 to over 800 individuals. Standard diagnostic criteria, including the NINCDS-ADRDA and DSM-
5, were employed for participant classification. Data analysis software included SPM, FSL, Free Surfer, AFNI, and MATLAB-
based platforms. Imaging datasets were typically spatially normalized to standard brain templates such as Montreal
Neurological Institute (MNI) or Talairach coordinates. Some studies incorporated longitudinal follow-up ranging from 12 to
60 months. Additional assessments in five studies included cerebrospinal fluid (CSF) biomarkers or APOE genotyping alongside

imaging. Three studies integrated cognitive or lifestyle interventions with pre- and post-imaging assessments. One study
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reported the use of blood-based biomarkers to monitor disease progression. Geographically, the studies were distributed across
the United States (n=20), Europe (n=15), East Asia (n=8), Canada (n=3), and multicenter international collaborations (n=4).
Most studies declared funding sources, including the National Institutes of Health (NIH), the European Commission, and

national research funding agencies.

DISCUSSION

Neuroimaging has emerged as a cornerstone in the early detection and management of Alzheimer’s disease (AD), providing
valuable insights into the underlying neuropathological processes well before the onset of overt clinical symptoms (1). The
current synthesis reaffirms that techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET),
and functional MRI (fMRI) enable the identification of subtle structural and functional brain alterations that precede cognitive
decline, with hippocampal atrophy and default mode network disruption consistently highlighted as early biomarkers (2,3).
These findings align with previous large-scale investigations, including those from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), which demonstrated the utility of volumetric MRI and amyloid PET imaging in stratifying individuals with
mild cognitive impairment (MCI) and predicting progression to clinical AD (4). While such imaging biomarkers have
strengthened the biological definition of AD, their diagnostic sensitivity in the preclinical stage remains limited, and
discrepancies persist across studies regarding the precise temporal dynamics and predictive value of specific neuroimaging
features (5,6).

Importantly, the integration of artificial intelligence (AI) and machine learning into neuroimaging analysis has marked a
significant methodological advancement, facilitating complex pattern recognition and improving diagnostic accuracy beyond
conventional visual assessments (7). Several studies included in this review reported classification accuracies exceeding 85%
when Al algorithms were applied to multimodal imaging data, corroborating previous evidence that machine learning can
enhance differentiation between AD, MCI, and healthy aging (8,9). Nonetheless, variability in algorithm performance,
differences in feature extraction, and limited external validation remain critical challenges that restrict clinical translation.
These findings are consistent with prior literature highlighting the need for standardized protocols and multicenter datasets to
ensure generalizability and reproducibility of AI-driven diagnostic models (10). Furthermore, while Al tools offer the promise
of efficiency and objectivity, their interpretability and regulatory approval processes require further development to secure

widespread adoption in clinical settings (11).

Parallel to advances in computational analysis, the exploration of nanotechnology-enhanced imaging represents an innovative
frontier in AD diagnostics. Preclinical studies have demonstrated that nanoparticles engineered to target amyloid-p and tau
aggregates can cross the blood-brain barrier and significantly improve signal sensitivity on MRI and PET scans (12,13). These
findings suggest that nanoparticle-based imaging could overcome limitations inherent in traditional tracers by offering higher
molecular specificity and facilitating earlier detection of pathological changes. However, the translation of these technologies
to human studies remains constrained by uncertainties regarding nanoparticle safety, long-term biodistribution, and potential
neurotoxicity (14). The heterogeneity in nanoparticle formulations and imaging platforms across studies further complicates
the establishment of standardized protocols for clinical application, a challenge also noted in earlier nanomedicine research
(15).

Despite the compelling potential of combining traditional imaging with Al and nanotechnology, this review underscores several
limitations inherent in the current evidence base. Many studies included in this analysis were characterized by small sample
sizes, single-centre designs, and limited follow-up durations, which may affect the robustness and external validity of the
findings. Moreover, there was considerable heterogeneity in imaging acquisition parameters, tracer types, and analytic
methodologies, complicating cross-study comparisons and meta-analytic integration. This mirrors concerns expressed in
previous systematic reviews, which emphasize the urgent need for large-scale, harmonized research efforts to unify imaging
protocols and outcome measures (16,17). Another important limitation is the underrepresentation of diverse ethnic and
demographic populations, which could restrict the applicability of imaging biomarkers and Al models in global clinical contexts
(18). Addressing these gaps is essential to ensure equitable access to emerging diagnostic technologies and avoid exacerbating

existing health disparities in dementia care.

The strengths of this review lie in its comprehensive scope, encompassing a broad range of neuroimaging modalities and
integrating evidence across structural, functional, and molecular domains. By synthesizing both conventional techniques and
innovative approaches such as AI and nanoparticle imaging, this work provides a nuanced perspective on the evolving
landscape of AD diagnostics. Nonetheless, further research is warranted to validate AI models across diverse populations, refine
nanoparticle safety profiles, and develop cost-effective, scalable imaging solutions suitable for routine clinical practice. Future

studies should prioritize longitudinal designs to elucidate the temporal progression of imaging biomarkers and their predictive
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value for cognitive decline and therapeutic response. Moreover, interdisciplinary collaborations combining neurology,
radiology, bioengineering, and data science are crucial to accelerate the translation of these technological advances into
practical tools for early intervention and disease modification (19). In conclusion, while significant progress has been achieved
in leveraging neuroimaging for the early detection of Alzheimer’s disease, the integration of emerging technologies holds
transformative potential to enhance diagnostic precision, enable timely therapeutic interventions, and ultimately improve

patient outcomes in this devastating neurodegenerative disorder.

CONCLUSION

In conclusion, this systematic review underscores that transforming Alzheimer’s diagnosis through advanced neuroimaging,
particularly when integrated with nanotechnology and Al-driven analytics, holds significant promise for enhancing early
detection and disease monitoring, aligning with the study’s objective to evaluate cutting-edge diagnostic strategies. The
combined use of structural MRI, functional MRI, PET imaging, and innovative nanoparticle-based techniques enables the
visualization of pathological changes at molecular and network levels before clinical symptoms manifest, offering critical
opportunities for timely intervention and personalized treatment approaches. Clinically, these advancements could improve
differential diagnosis, enable risk stratification, and facilitate the development of targeted therapeutics, ultimately contributing
to more effective management and potentially delaying disease progression. However, challenges remain regarding
standardization, cost, regulatory approval, and ensuring safety and equity in access, highlighting the need for further large-
scale, longitudinal research to validate these emerging technologies and translate them into routine clinical practice, thereby
paving the way for a future where Alzheimer’s disease may be detected and addressed with unprecedented precision and impact

on human health.
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